Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array
Abstract
:1. Introduction
2. Transition Design
3. Phased Array Design
3.1. Horn Antenna
3.2. Mutual Coupling Reduction
4. Results
5. Comparison with Other Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, I.; Ramírez, G.A.; Montero, L.; Blanch, S.; Romeu, J.; Jofre, L. Three-Dimensional Beamsteering Low-Complexity Reconfigurable Multilevel Antenna. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1017–1021. [Google Scholar] [CrossRef]
- Liu, B.D.; Gaucher, U.P.; Grzyb, J. Advanced Millimeterwave Technologies: Antennas, Packaging and Circuits; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A 28 GHz transceiver chip for 5G beamforming data links in SiGe BiCMOS. In Proceedings of the 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Miami, FL, USA, 19–21 October 2017; pp. 74–77. [Google Scholar] [CrossRef]
- Levine, E.; Malamud, G.; Shtrikman, S.; Treves, D. A study of microstrip array antennas with the feed network. IEEE Trans. Antennas Propag. 1989, 37, 426–434. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Guo, Y.X.; Liu, Z.G. W-Band Large-Scale High-Gain Planar Integrated Antenna Array. IEEE Trans. Antennas Propag. 2014, 62, 3370–3373. [Google Scholar] [CrossRef]
- Kamble, P.S.; Khoje, S.A.; Lele, J.A. Recent Developments in 3D Printing Technologies: Review. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 468–473. [Google Scholar] [CrossRef]
- Lomakin, K.; Pavlenko, T.; Sippel, M.; Gold, G.; Helmreich, K.; Ankenbrand, M.; Urban, N.; Franke, J. Impact of surface roughness on 3D printed SLS horn antennas. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Russo, A.C.; Andreassi, G.; Di Girolamo, A.; Pappadà, S.; Buccoliero, G.; Barile, G.; Vegliò, F.; Stornelli, V. FDM 3D Printing of high performance composite materials. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 & IoT), Naples, Italy, 4–6 June 2019; pp. 355–359. [Google Scholar] [CrossRef]
- Gupta, P.; Bhat, M.; Khamkar, V.; Tandel, G.; Salunkhe, G. Designing of Cost Effective Resin 3D Printer using UV LED. In Proceedings of the 2020 International Conference on Convergence to Digital World-Quo Vadis (ICCDW), Mumbai, India, 18–20 February 2020. [Google Scholar] [CrossRef]
- Tsai, M.J.; Mei, C.W.; Cheng, Y.L.; Chen, F.; Hu, Z.Y.; Huang, K.C. A study of a material jetting based color 3d printing system by using multiple piezoelectric heads. In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017; Volume 2, pp. 664–669. [Google Scholar] [CrossRef]
- Cazden, J.; Boskovic, L.; Lier, E.; Hand, T.; Kefauver, W.N.; Filipovic, D. Performance of SLA and DMLS 3D Printed Ka-Band Resonators with Integrated Coaxial Launchers. In Proceedings of the 2021 51st European Microwave Conference (EuMC), London, UK, 4–6 April 2022; pp. 338–341. [Google Scholar] [CrossRef]
- Li, Y.; Ge, L.; Wang, J.; Da, S.; Cao, D.; Wang, J.; Liu, Y. 3-D Printed High-Gain Wideband Waveguide Fed Horn Antenna Arrays for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2019, 67, 2868–2877. [Google Scholar] [CrossRef]
- Oktafiani, F.; Hamid, E.Y.; Munir, A. Wideband Dual-Polarized 3D Printed Quad-Ridged Horn Antenna. IEEE Access 2022, 10, 8036–8048. [Google Scholar] [CrossRef]
- Goode, I.; Saavedra, C.E. 3D Printed Linearly Polarized X-Band Conical Horn Antenna and Lens. IEEE Open J. Antennas Propag. 2022, 3, 549–556. [Google Scholar] [CrossRef]
- Yao, H.; Sharma, S.; Henderson, R.; Ashrafi, S.; MacFarlane, D. Ka band 3D printed horn antennas. In Proceedings of the 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 30–31 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Tuan, N.T.; Sakakibara, K.; Kikuma, N. Bandwidth Extension of Planar Microstrip-to-Waveguide Transition by Controlling Transmission Modes Through Via-Hole Positioning in Millimeter-Wave Band. IEEE Access 2019, 7, 161385–161393. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sakakibara, K.; Suzuki, Y.; Kikuma, N. Millimeter-Wave Topside Waveguide-to-Microstrip Transition in Multilayer Substrate. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 380–382. [Google Scholar] [CrossRef]
- Topak, E.; Hasch, J.; Zwick, T. Compact Topside Millimeter-Wave Waveguide-to-Microstrip Transitions. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 641–643. [Google Scholar] [CrossRef]
- Seo, K.S.K.; Kikuma, N. Narrow-Wall-Connected Microstrip-to-Waveguide Transition Using V-Shaped Patch Element in Millimeter-Wave Band. IEICE Trans. Commun. 2010, E93-B, 2523–2530. [Google Scholar] [CrossRef]
- Tong, Z.; Stelzer, A. A Vertical Transition Between Rectangular Waveguide and Coupled Microstrip Lines. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 251–253. [Google Scholar] [CrossRef]
- Zhou, I.; Romeu, J. Ultra-Wideband narrow wall waveguide-to-microstrip transition using overlapped patches. Sensors 2022, 22, 2964. [Google Scholar] [CrossRef] [PubMed]
- Pozar, D.; Schaubert, D. Scan blindness in infinite phased arrays of printed dipoles. IEEE Trans. Antennas Propag. 1984, 32, 602–610. [Google Scholar] [CrossRef]
0.81 | 0.47 | 4.2 | 0.25 | ||||
1.5 | 1.1 | 8.8 | 1.17 | ||||
2.75 | 1.35 | 1 | 0.5 | ||||
1.3 | 2.5 | 2 | 1.2 | ||||
4.48 | 2.55 | 4.5 |
0° | 28° | 56° | 84° | 112° | 140° | |
---|---|---|---|---|---|---|
Gain (dB) | 15.2 | 15.15 | 15.04 | 15.05 | 13.75 | 13.7 |
Directivity (dB) | 16.25 | 15.8 | 15.8 | 15.74 | 15.33 | 14.2 |
(%) | 78.5 | 86 | 83.9 | 85.3 | 69.5 | 91.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, I.; Pradell, L.; Villegas, J.M.; Vidal, N.; Albert, M.; Jofre, L.; Romeu, J. Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array. Sensors 2022, 22, 5329. https://doi.org/10.3390/s22145329
Zhou I, Pradell L, Villegas JM, Vidal N, Albert M, Jofre L, Romeu J. Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array. Sensors. 2022; 22(14):5329. https://doi.org/10.3390/s22145329
Chicago/Turabian StyleZhou, Ivan, Lluís Pradell, José Maria Villegas, Neus Vidal, Miquel Albert, Lluís Jofre, and Jordi Romeu. 2022. "Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array" Sensors 22, no. 14: 5329. https://doi.org/10.3390/s22145329
APA StyleZhou, I., Pradell, L., Villegas, J. M., Vidal, N., Albert, M., Jofre, L., & Romeu, J. (2022). Microstrip-Fed 3D-Printed H-Sectorial Horn Phased Array. Sensors, 22(14), 5329. https://doi.org/10.3390/s22145329