High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations
Abstract
:1. Introduction
2. Sample
2.1. Sources with VLBI Data
2.2. VLBI Data
3. Methods
4. Results
4.1. Source Compactness
4.2. Morphology
4.3. Jet Proper Motion
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sample Selection
Name | z | Epoch | BW | P.A. | rms | Core Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) |
(MHz) | (MHz) | (mas) | (mas) | (°) | (Jy beam−1) | (Jy) | (Jy) | (mas) | |||||
J0001+1914 | 3.10 | 2 January 1996 | 16.0 | 8336.89 | 2.93 | 0.94 | 104.1 | 1.15 | 0.38 | 0.38 | 0.16 | 1.00 | 0.99 |
J0048+0640 | 3.58 | 30 April 2004 | 32.0 | 8646.22 | 2.47 | 1.08 | 82.90 | 0.82 | 0.07 | 0.05 | 0.24 | 0.74 | 1.32 |
J0121-2806 | 3.11 | 12 May 2005 | 32.0 | 8646.22 | 3.51 | 1.19 | 101.8 | 1.15 | 0.14 | 0.14 | 0.80 | 1.00 | 0.87 |
J0148+4215 | 3.24 | 8 February 2012 | 32.0 | 8642.24 | 1.55 | 1.28 | 126.25 | 0.35 | 0.12 | 0.12 | 0.13 | 1.00 | 1.11 |
J0151+2517 | 3.10 | 9 July 2005 | 32.0 | 8646.22 | 4.20 | 1.01 | 105.7 | 1.02 | 0.11 | 0.11 | 1.66 | 1.00 | 1.07 |
J0203+1134 | 3.63 | 1 October 1998 | 16.0 | 8644.23 | 1.62 | 0.73 | 97.94 | 0.55 | 0.53 | 0.38 | 0.64 | 0.72 | 0.95 |
J0257+4338 | 4.06 | 30 June 2005 | 32.0 | 8646.22 | 1.96 | 0.98 | 83.80 | 0.50 | 0.12 | 0.10 | 0.30 | 0.88 | 0.88 |
J0324-2918 | 4.63 | 12 May 2005 | 32.0 | 8646.22 | 2.51 | 0.95 | 96.40 | 1.24 | 0.09 | 0.09 | 0.26 | 1.00 | 1.07 |
J0337-1204 | 3.44 | 7 May 1997 | 32.0 | 8339.47 | 2.80 | 1.12 | 88.75 | 1.89 | 0.10 | 0.10 | 0.18 | 1.00 | 0.45 |
J0339-0133 | 3.19 | 27 March 2007 | 32.0 | 8642.24 | 3.69 | 2.57 | 78.5 | 1.25 | 0.13 | 0.13 | 2.24 | 1.00 | 1.00 |
J0354+0441 | 3.26 | 15 July 1995 | 16.0 | 8336.89 | 2.34 | 1.05 | 92.44 | 1.24 | 0.20 | 0.2 | 0.83 | 1.00 | 0.93 |
J0424+0805 | 3.09 | 20 July 2005 | 32.0 | 8646.22 | 2.17 | 0.91 | 90.50 | 0.72 | 0.33 | 0.33 | 0.15 | 1.00 | 0.87 |
J0428+1732 | 3.32 | 2 January 1996 | 16.0 | 8336.89 | 2.67 | 0.99 | 100.75 | 1.26 | 0.16 | 0.16 | 0.31 | 1.00 | 1.03 |
J0539-2839 | 3.10 | 27 August 1997 | 32.0 | 8339.47 | 2.78 | 0.95 | 92.4 | 1.11 | 0.87 | 0.87 | 0.39 | 1.00 | 0.73 |
Name | Doppler Factor | Speed | Error Speed | Lorentz Factor | Viewing Angle | ||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
() | (c) | (°) | |||||
J0001+1914 | 102.08 | 0.31 | 20.42 | 1.71 | 1.43 | 10.30 | 0.46 |
J0048+0640 | 6.38 | 0.11 | 1.28 | 1.94 | 1.03 | 2.50 | 41.44 |
J0121-2806 | 1.43 | 0.01 | 0.29 | 6.96 | 5.50 | - | - |
J0151+2517 | 0.26 | 0.01 | 0.05 | 0.79 | 2.17 | - | - |
J0203+1134 | 6.91 | 0.01 | 1.38 | ≈0 | - | - | - |
J0232+2317 | 19.39 | 0.14 | 3.88 | 8.97 | 0.56 | 12.42 | 10.75 |
J0257+4338 | 9.74 | 0.05 | 1.95 | 0.99 | 0.22 | 1.48 | 27.61 |
J0339-0133 | 0.18 | 0.01 | 0.04 | 0.20 | 1.00 | - | - |
J0539-2839 | 41.37 | 0.05 | 8.27 | 5.03 | 1.10 | 5.72 | 6.18 |
J0733+0456 | 34.33 | 0.15 | 6.87 | 4.51 | 3.05 | 4.98 | 7.72 |
J0753+4231 | 11.68 | 0.06 | 2.34 | 0.53 | 0.97 | 1.44 | 12.69 |
J0847+3831 | 26.16 | 0.23 | 5.23 | ≈0 | - | - | - |
J0915+0007 | 4.54 | 0.06 | 0.91 | ≈0 | - | - | - |
J0933+2845 | 0.34 | 0.01 | 0.07 | 7.91 | 10.86 | - | - |
J0941+1145 | 1.25 | 0.01 | 0.25 | 10.01 | 0.93 | - | - |
J1016+2037 | 5.06 | 0.02 | 1.01 | 3.78 | 1.42 | 8.05 | 27.84 |
J1230-1139 | 56.95 | 0.59 | 11.39 | 1.17 | 2.11 | 5.79 | 1.03 |
J1242+3720 | 1.02 | 0.01 | 0.20 | 2.77 | 3.10 | - | - |
J1340+3754 | 49.05 | 0.33 | 9.81 | ≈0 | - | - | - |
J1354-0206 | 15.24 | 0.03 | 3.05 | 0.59 | 0.40 | 1.74 | 7.80 |
J1356-1101 | 1.52 | 0.02 | 0.3 | 1.87 | 4.05 | - | - |
J1405+0415 | 8.67 | 0.01 | 1.73 | 9.71 | 0.57 | 28.36 | 11.39 |
J1421-0643 | 8.26 | 0.07 | 1.65 | 7.85 | 0.67 | 19.78 | 13.91 |
J1430+4204 | 44.13 | 0.16 | 8.83 | 1.67 | 0.16 | 4.62 | 2.39 |
J1445+0958 | 0.94 | 0.01 | 0.19 | 3.75 | 9.88 | - | - |
J1521+1756 | 2.02 | 0.04 | 0.4 | 0.62 | 0.29 | - | - |
J1538+0019 | 2.13 | 0.01 | 0.43 | 6.30 | 2.49 | - | - |
J1658-0739 | 13.32 | 0.01 | 2.66 | 2.84 | 0.58 | 3.03 | 21.84 |
Appendix B. Data Analysis
Appendix B.1. Self-Calibration and Imaging
Appendix B.2. Model Fitting
- We compared the separation and position angle of each component relative to the core.
- We considered the evolution of flux density and size, expecting these properties to vary smoothly over time for a single physical component [74].
- In cases of ambiguous identification due to differences in resolution or sensitivity between epochs, we examined the overall structural evolution of the source and used physical arguments about plausible component motions to inform our decisions.
- When necessary, we referred to observations at other frequencies to aid in component identification.
Appendix B.3. Calculation of Brightness Temperatures
Appendix B.4. Estimation of Doppler Factors
Appendix B.5. Proper Motion Measurements for Multi-Epoch Sources
Appendix B.6. Spectral Index Map
1 | Throughout this paper, we adopt a flat ΛCDM cosmological model with H0 = 70 km s−1 Mpc−1, , and . At , 1 mas angular size corresponds to a projected linear size of ∼7.7 pc, or ∼25 light years. |
2 | Astrogeo VLBI archive, Available online: http://astrogeo.org/ (accessed on 24 December 2024). |
3 | Available online: https://github.com/SHAO-SKA/Astro_AGN_catalogue.git (accessed on 24 December 2024). |
4 | Available online: https://github.com/SHAO-SKA/vlbi-pipeline.git (accessed on 24 December 2024). |
References
- Fan, X.; Carilli, C.L.; Keating, B. Observational Constraints on Cosmic Reionization. Annu. Rev. Astron. Astrophys. 2006, 44, 415–462. [Google Scholar] [CrossRef]
- Volonteri, M. The Formation and Evolution of Massive Black Holes. Science 2012, 337, 544. [Google Scholar] [CrossRef] [PubMed]
- Volonteri, M.; Bellovary, J. Black holes in the early Universe. Rep. Prog. Phys. 2012, 75, 124901. [Google Scholar] [CrossRef] [PubMed]
- Inayoshi, K.; Visbal, E.; Haiman, Z. The Assembly of the First Massive Black Holes. Annu. Rev. Astron. Astrophys. 2020, 58, 27–97. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Ghisellini, G.; Haardt, F.; Della Ceca, R.; Volonteri, M.; Sbarrato, T. The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. Mon. Not. R. Astron. Soc. 2013, 432, 2818–2823. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Menou, K.; Knapp, G.R.; Strauss, M.A.; Lupton, R.H.; Vanden Berk, D.E.; Richards, G.T.; Tremonti, C.; Weinstein, M.A.; Anderson, S.; et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey. Astron. J. 2002, 124, 2364–2400. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Condon, J.J.; Kimball, A.E.; Perley, R.A.; Ivezić, Ž. Radio-loud and Radio-quiet QSOs. Astrophys. J. 2016, 831, 168. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, X.; Ivezić, Ž.; Richards, G.T.; Schneider, D.P.; Strauss, M.A.; Kelly, B.C. The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity. Astrophys. J. 2007, 656, 680–690. [Google Scholar] [CrossRef]
- Angel, J.R.P.; Stockman, H.S. Optical and infrared polarization of active extragalactic objects. Annu. Rev. Astron. Astrophys. 1980, 18, 321–361. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. Some comments on radiation mechanisms in Lacertids. In Pittsburgh Conference on BL Lac Objects; Wolfe, A.M., Ed.; University of Pittsburgh: Pittsburgh, PA, USA, 1978; pp. 328–341. [Google Scholar]
- Volonteri, M.; Haardt, F.; Ghisellini, G.; Della Ceca, R. Blazars in the early Universe. Mon. Not. R. Astron. Soc. 2011, 416, 216–224. [Google Scholar] [CrossRef]
- Hovatta, T.; Aller, M.F.; Aller, H.D.; Clausen-Brown, E.; Homan, D.C.; Kovalev, Y.Y.; Lister, M.L.; Pushkarev, A.B.; Savolainen, T. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XI. Spectral Distributions. Astron. J. 2014, 147, 143. [Google Scholar] [CrossRef]
- Coppejans, R.; van Velzen, S.; Intema, H.T.; Müller, C.; Frey, S.; Coppejans, D.L.; Cseh, D.; Williams, W.L.; Falcke, H.; Körding, E.G.; et al. Radio spectra of bright compact sources at z > 4.5. Mon. Not. R. Astron. Soc. 2017, 467, 2039–2060. [Google Scholar] [CrossRef]
- Snellen, I.A.G.; Schilizzi, R.T.; Miley, G.K.; de Bruyn, A.G.; Bremer, M.N.; Röttgering, H.J.A. On the evolution of young radio-loud AGN. Mon. Not. R. Astron. Soc. 2000, 319, 445–456. [Google Scholar] [CrossRef]
- Fanti, C. Radio properties of CSSs and GPSs. Astron. Nachrichten 2009, 330, 120–127. [Google Scholar] [CrossRef]
- O’Dea, C.P. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources. Publ. Astron. Soc. Pac. 1998, 110, 493–532. [Google Scholar] [CrossRef]
- Orienti, M. Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources. Astron. Nachrichten 2016, 337, 9. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Fanti, C.; Fanti, R.; Dallacasa, D.; Schilizzi, R.T.; Spencer, R.E.; Stanghellini, C. Are compact steep-spectrum sources young? Astron. Astrophys. 1995, 302, 317. [Google Scholar]
- An, T.; Baan, W.A. The Dynamic Evolution of Young Extragalactic Radio Sources. Astrophys. J. 2012, 760, 77. [Google Scholar] [CrossRef]
- Tadhunter, C. Radio AGN in the local universe: Unification, triggering and evolution. Astron. Astrophys. Rev. 2016, 24, 10. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T. The interstellar and circumnuclear medium of active nuclei traced by H i 21 cm absorption. Astron. Astrophys. Rev. 2018, 26, 4. [Google Scholar] [CrossRef]
- Sotnikova, Y.; Mikhailov, A.; Mufakharov, T.; Mingaliev, M.; Bursov, N.; Semenova, T.; Stolyarov, V.; Udovitskiy, R.; Kudryashova, A.; Erkenov, A. High-redshift quasars at z ≥ 3 - I. Radio spectra. Mon. Not. R. Astron. Soc. 2021, 508, 2798–2814. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.N.; Morganti, R. Fast outflows in compact radio sources: Evidence for AGN-induced feedback in the early stages of radio source evolution. Mon. Not. R. Astron. Soc. 2008, 387, 639–659. [Google Scholar] [CrossRef]
- Sotnikova, Y.; Mikhailov, A.; Mufakharov, T.; An, T.; Kudryavtsev, D.; Mingaliev, M.; Udovitskiy, R.; Kudryashova, A.; Stolyarov, V.; Semenova, T. High-Redshift Quasars at z ≥ 3: Radio Variability and MPS/GPS Candidates. Galaxies 2024, 12, 25. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE: XIII. Parsec-scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz. Astron. J. 2016, 152, 12. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. Astrophys. J. Suppl. Ser. 2018, 234, 12. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Ros, E.; Savolainen, T. Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies. Astrophys. J. 2021, 923, 30. [Google Scholar] [CrossRef]
- Frey, S.; Fogasy, J.O.; Paragi, Z.; Gurvits, L.I. On the Doppler boosting in the compact radio jet of the distant blazar J1026+2542 at z = 5.3. Mon. Not. R. Astron. Soc. 2013, 431, 1314–1319. [Google Scholar] [CrossRef]
- Frey, S.; Paragi, Z.; Fogasy, J.O.; Gurvits, L.I. The first estimate of radio jet proper motion at z > 5. Mon. Not. R. Astron. Soc. 2015, 446, 2921–2928. [Google Scholar] [CrossRef]
- An, T.; Wang, A.; Zhang, Y.; Aditya, J.N.H.S.; Hong, X.; Cui, L. A compact symmetric radio source born at one-tenth the current age of the Universe. Mon. Not. R. Astron. Soc. 2022, 511, 4572–4581. [Google Scholar] [CrossRef]
- Guo, S.; An, T.; Liu, Y.; Sotnikova, Y.; Volvach, A.; Mufakharov, T.; Chen, L.; Cui, L.; Wang, A.; Xu, Z.; et al. Magnetically driven relativistic jet in the high-redshift blazar OH 471. Astron. Astrophys. 2024, 685, L11. [Google Scholar] [CrossRef]
- Shepherd, M.C. Difmap: An Interactive Program for Synthesis Imaging. In Proceedings of the Astronomical Data Analysis Software and Systems VI, San Francisco, CA, USA, 1997; Hunt, G., Payne, H., Eds.; Astronomical Society of the Pacific Conference Series. 1997; Volume 125, p. 77. Available online: https://www.cv.nrao.edu/adass/adassVI/shepherdm.html (accessed on 23 December 2024).
- Frey, S.; Gurvits, L.I.; Paragi, Z.; É. Gabányi, K. High-resolution double morphology of the most distant known radio quasar at z = 6.12. Astron. Astrophys. 2008, 484, L39–L42. [Google Scholar] [CrossRef]
- Zhang, Y.; An, T.; Frey, S.; Gabányi, K.É.; Sotnikova, Y. Radio Jet Proper-motion Analysis of Nine Distant Quasars above Redshift 3.5. Astrophys. J. 2022, 937, 19. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Nizhelsky, N.A.; Kovalev, Y.A.; Berlin, A.B.; Zhekanis, G.V.; Mingaliev, M.G.; Bogdantsov, A.V. Survey of instantaneous 1–22 GHz spectra of 550 compact extragalactic objects with declinations from −30deg to +43deg. Astron. Astrophys. Suppl. Ser. 1999, 139, 545–554. [Google Scholar] [CrossRef]
- Pushkarev, A.B.; Kovalev, Y.Y. Single-Epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz. Astron. Astrophys. 2012, 544, A34. [Google Scholar] [CrossRef]
- Paragi, Z.; Godfrey, L.; Reynolds, C.; Rioja, M.J.; Deller, A.; Zhang, B.; Gurvits, L.; Bietenholz, M.; Szomoru, A.; Bignall, H.E.; et al. Very Long Baseline Interferometry with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 8–13 June 2014; p. 143. [Google Scholar] [CrossRef]
- An, T.; Jaiswal, S.; Mohan, P.; Zhao, Z.; Lao, B. A Cosmic Microscope to Probe the Universe from Present to Cosmic Dawn:Dual-element Low-frequency Space VLBI Observatory. Chin. J. Space Sci. 2019, 39, 242. [Google Scholar] [CrossRef]
- An, T.; Hong, X.; Zheng, W.; Ye, S.; Qian, Z.; Fu, L.; Guo, Q.; Jaiswal, S.; Kong, D.; Lao, B.; et al. Space very long baseline interferometry in China. Adv. Space Res. 2020, 65, 850–855. [Google Scholar] [CrossRef]
- Frey, S.; Paragi, Z.; Gurvits, L.I.; Gabányi, K.É.; Cseh, D. Into the central 10 pc of the most distant known radio quasar. VLBI imaging observations of J1429+5447 at z = 6.21. Astron. Astrophys. 2011, 531, L5. [Google Scholar] [CrossRef]
- Scott, W.K.; Fomalont, E.B.; Horiuchi, S.; Lovell, J.E.J.; Moellenbrock, G.A.; Dodson, R.G.; Edwards, P.G.; Coldwell, G.V.; Fodor, S.; Frey, S.; et al. The VSOP 5 GHz Active Galactic Nucleus Survey. III. Imaging Results for the First 102 Sources. Astrophys. J. Suppl. Ser. 2004, 155, 33–72. [Google Scholar] [CrossRef]
- Krezinger, M.; Frey, S.; Perger, K.; Gabányi, K.É.; An, T.; Zhang, Y.; Gurvits, L.I.; Titov, O.; Melnikov, A.; Paragi, Z. Proper motion of the radio jets in two blazars at redshift above 3. Mon. Not. R. Astron. Soc. 2024, 530, 4614–4625. [Google Scholar] [CrossRef]
- Pasetto, A.; Carrasco-González, C.; O’Sullivan, S.; Basu, A.; Bruni, G.; Kraus, A.; Curiel, S.; Mack, K.H. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN. Astron. Astrophys. 2018, 613, A74. [Google Scholar] [CrossRef]
- Pushkarev, A.; Kovalev, Y.; Lister, M.; Savolainen, T. VizieR Online Data Catalog: MOJAVE XIV. AGN jet shapes & opening angles (Pushkarev+, 2017). VizieR Online Data Cat. 2017, 746, J-MNRAS. [Google Scholar]
- Gurvits, L.I.; Kellermann, K.I.; Frey, S. The “angular size - redshift” relation for compact radio structures in quasars and radio galaxies. Astron. Astrophys. 1999, 342, 378–388. [Google Scholar]
- Homan, D.C.; Cohen, M.H.; Hovatta, T.; Kellermann, K.I.; Kovalev, Y.Y.; Lister, M.L.; Popkov, A.V.; Pushkarev, A.B.; Ros, E.; Savolainen, T. VizieR Online Data Catalog: MOJAVE. XIX. Brightness temperatures of jets (Homan+, 2021). VizieR Online Data Cat. 2023, 192, J-ApJ. [Google Scholar]
- Mukherjee, D.; Bodo, G.; Mignone, A.; Rossi, P.; Vaidya, B. Simulating the dynamics and non-thermal emission of relativistic magnetized jets I. Dynamics. Mon. Not. R. Astron. Soc. 2020, 499, 681–701. [Google Scholar] [CrossRef]
- Carilli, C.L.; Walter, F. Cool Gas in High-Redshift Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef]
- Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 2010, 18, 279–315. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Liodakis, I.; Romani, R.W.; Filippenko, A.V.; Kiehlmann, S.; Max-Moerbeck, W.; Readhead, A.C.S.; Zheng, W. Multiwavelength cross-correlations and flaring activity in bright blazars. Mon. Not. R. Astron. Soc. 2018, 480, 5517–5528. [Google Scholar] [CrossRef]
- Volonteri, M.; Stark, D.P. Assessing the redshift evolution of massive black holes and their hosts. Mon. Not. R. Astron. Soc. 2011, 417, 2085–2093. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 2013, 430, 174–196. [Google Scholar] [CrossRef]
- Ghisellini, G.; Celotti, A.; Tavecchio, F.; Haardt, F.; Sbarrato, T. Radio-loud active galactic nuclei at high redshifts and the cosmic microwave background. Mon. Not. R. Astron. Soc. 2014, 438, 2694–2700. [Google Scholar] [CrossRef]
- Ghisellini, G.; Sbarrato, T. Dark bubbles around high-redshift radio-loud active galactic nucleus. Mon. Not. R. Astron. Soc. 2016, 461, L21–L25. [Google Scholar] [CrossRef]
- Fabian, A.C.; Walker, S.A.; Celotti, A.; Ghisellini, G.; Mocz, P.; Blundell, K.M.; McMahon, R.G. Do high-redshift quasars have powerful jets? Mon. Not. R. Astron. Soc. 2014, 442, L81–L84. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Shabala, S.S.; Ash, S.; Alexander, P.; Riley, J.M. The duty cycle of local radio galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 625–637. [Google Scholar] [CrossRef]
- Mezcua, M.; Domínguez Sánchez, H. MaNGA AGN dwarf galaxies (MAD) - I. A new sample of AGNs in dwarf galaxies with spatially-resolved spectroscopy. Mon. Not. R. Astron. Soc. 2024, 528, 5252–5268. [Google Scholar] [CrossRef]
- Kapinska, A.D.; Hardcastle, M.; Jackson, C.; An, T.; Baan, W.; Jarvis, M. Unravelling lifecycles and physics of radio-loud AGN in the SKA Era. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 8–13 June 2014; p. 173. [Google Scholar] [CrossRef]
- Bañados, E.; Venemans, B.P.; Mazzucchelli, C.; Farina, E.P.; Walter, F.; Wang, F.; Decarli, R.; Stern, D.; Fan, X.; Davies, F.B.; et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 2018, 553, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Chen, R.; Gan, H.; Sun, J.; Zhu, B.; Li, H.; Zhu, W.; Wu, J.; Chen, X.; Zhang, H.; et al. The FAST Core Array. Astron. Tech. Instruments 2024, 1, 84–94. [Google Scholar] [CrossRef]
- An, T.; Wu, X.; Lao, B.; Guo, S.; Xu, Z.; Lv, W.; Zhang, Y.; Zhang, Z. Status and progress of China SKA Regional Centre prototype. Sci. China Phys. Mech. Astron. 2022, 65, 129501. [Google Scholar] [CrossRef]
- Cornwell, T.; Fomalont, E.B. Self-Calibration. In Synthesis Imaging in Radio Astronomy II; Taylor, G.B., Carilli, C.L., Perley, R.A., Eds.; Astronomical Society of the Pacific Conference Series; 1999; Volume 180, p. 187. Available online: https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292 (accessed on 23 December 2024).
- Readhead, A.C.S.; Wilkinson, P.N. The mapping of compact radio sources from VLBI data. Astrophys. J. 1978, 223, 25–36. [Google Scholar] [CrossRef]
- Pearson, T.J. Non-Imaging Data Analysis. In Synthesis Imaging in Radio Astronomy II; Taylor, G.B., Carilli, C.L., Perley, R.A., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1999; Volume 180, p. 335. Available online: https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292 (accessed on 23 December 2024).
- Lister, M.L.; Cohen, M.H.; Homan, D.C.; Kadler, M.; Kellermann, K.I.; Kovalev, Y.Y.; Ros, E.; Savolainen, T.; Zensus, J.A. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets. Astron. J. 2009, 138, 1874–1892. [Google Scholar] [CrossRef]
- An, T.; Mohan, P.; Zhang, Y.; Frey, S.; Yang, J.; Gabányi, K.É.; Gurvits, L.I.; Paragi, Z.; Perger, K.; Zheng, Z. Evolving parsec-scale radio structure in the most distant blazar known. Nat. Commun. 2020, 11, 143. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Hovatta, T.; Kellermann, K.I.; Kiehlmann, S.; Kovalev, Y.Y.; Max-Moerbeck, W.; Pushkarev, A.B.; Readhead, A.C.S.; Ros, E.; et al. MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars. Astrophys. J. 2019, 874, 43. [Google Scholar] [CrossRef]
- An, T.; Wu, F.; Yang, J.; Taylor, G.B.; Hong, X.; Baan, W.A.; Liu, X.; Wang, M.; Zhang, H.; Wang, W.; et al. VLBI Observations of 10 Compact Symmetric Object Candidates: Expansion Velocities of Hot Spots. Astrophys. J. Suppl. Ser. 2012, 198, 5. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Owen, F.N. Radio galaxies and quasars. In Galactic and Extragalactic Radio Astronomy; Kellermann, K.I., Verschuur, G.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 563–602. [Google Scholar]
- Kovalev, Y.Y.; Kellermann, K.I.; Lister, M.L.; Homan, D.C.; Vermeulen, R.C.; Cohen, M.H.; Ros, E.; Kadler, M.; Lobanov, A.P.; Zensus, J.A.; et al. Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure. Astron. J. 2005, 130, 2473–2505. [Google Scholar] [CrossRef]
- Lobanov, A.P. Resolution limits in astronomical images. arXiv, 2005; arXiv:astro-ph/0503225. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Pauliny-Toth, I.I.K. The Spectra of Opaque Radio Sources. Astrophys. J. 1969, 155, L71. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Pauliny-Toth, I.I.K. Compact radio sources. Annu. Rev. Astron. Astrophys. 1981, 19, 373–410. [Google Scholar] [CrossRef]
- Readhead, A.C.S. Equipartition Brightness Temperature and the Inverse Compton Catastrophe. Astrophys. J. 1994, 426, 51. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Kovalev, Y.Y.; Lister, M.L.; Homan, D.C.; Kadler, M.; Cohen, M.H.; Ros, E.; Zensus, J.A.; Vermeulen, R.C.; Aller, M.F.; et al. Doppler boosting, superluminal motion, and the kinematics of AGN jets. Astrophys. Space Sci. 2007, 311, 231–239. [Google Scholar] [CrossRef]
- Lovell, J.E.J.; Rickett, B.J.; Macquart, J.P.; Jauncey, D.L.; Bignall, H.E.; Kedziora-Chudczer, L.; Ojha, R.; Pursimo, T.; Dutka, M.; Senkbeil, C.; et al. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey. II. The First Four Epochs. Astrophys. J. 2008, 689, 108–126. [Google Scholar] [CrossRef]
- Singal, A.K. Maximum Brightness Temperature of an Incoherent Synchrotron Source: Inverse Compton Limit—A Misnomer. Astrophys. J. 2009, 703, L109–L112. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Kardashev, N.S.; Kellermann, K.I.; Lobanov, A.P.; Johnson, M.D.; Gurvits, L.I.; Voitsik, P.A.; Zensus, J.A.; Anderson, J.M.; Bach, U.; et al. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit. Astrophys. J. Lett. 2016, 820, L9. [Google Scholar] [CrossRef]
- Cheng, X.P.; An, T.; Frey, S.; Hong, X.Y.; He, X.; Kellermann, K.I.; Lister, M.L.; Lao, B.Q.; Li, X.F.; Mohan, P.; et al. Compact Bright Radio-loud AGNs. III. A Large VLBA Survey at 43 GHz. Astrophys. J. Suppl. Ser. 2020, 247, 57. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Lister, M.L.; Stirling, A.M.; Cawthorne, T.V.; Gear, W.K.; Gómez, J.L.; Stevens, J.A.; Smith, P.S.; Forster, J.R.; et al. Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array. Astron. J. 2005, 130, 1418–1465. [Google Scholar] [CrossRef]
- Hovatta, T.; Valtaoja, E.; Tornikoski, M.; Lähteenmäki, A. Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies. Astron. Astrophys. 2009, 494, 527–537. [Google Scholar] [CrossRef]
- Gurvits, L.I.; Frey, S.; Paragi, Z. Jets in AGN at extremely high redshifts. In Proceedings of the Extragalactic Jets from Every Angle; Massaro, F., Cheung, C.C., Lopez, E., Siemiginowska, A., Eds.; IAU Symposium; Cambridge University Press: Cambridge, UK, 2015; Volume 313, pp. 327–328. [Google Scholar] [CrossRef]
- Homan, D.C.; Kovalev, Y.Y.; Lister, M.L.; Ros, E.; Kellermann, K.I.; Cohen, M.H.; Vermeulen, R.C.; Zensus, J.A.; Kadler, M. Intrinsic Brightness Temperatures of AGN Jets. Astrophys. J. 2006, 642, L115–L118. [Google Scholar] [CrossRef]
- Liodakis, I.; Hovatta, T.; Huppenkothen, D.; Kiehlmann, S.; Max-Moerbeck, W.; Readhead, A.C.S. Constraining the Limiting Brightness Temperature and Doppler Factors for the Largest Sample of Radio-bright Blazars. Astrophys. J. 2018, 866, 137. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Lister, M.L.; Homan, D.C.; Vermeulen, R.C.; Cohen, M.H.; Ros, E.; Kadler, M.; Zensus, J.A.; Kovalev, Y.Y. Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. III. Kinematics of Parsec-scale Radio Jets. Astrophys. J. 2004, 609, 539–563. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE. X. Parsec-scale Jet Orientation Variations and Superluminal Motion in Active Galactic Nuclei. Astron. J. 2013, 146, 120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; An, T.; Liu, Y.; Liu, C.; Xu, Z.; Sotnikova, Y.; Mufakharov, T.; Wang, A. High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations. Universe 2025, 11, 91. https://doi.org/10.3390/universe11030091
Guo S, An T, Liu Y, Liu C, Xu Z, Sotnikova Y, Mufakharov T, Wang A. High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations. Universe. 2025; 11(3):91. https://doi.org/10.3390/universe11030091
Chicago/Turabian StyleGuo, Shaoguang, Tao An, Yuanqi Liu, Chuanzeng Liu, Zhijun Xu, Yulia Sotnikova, Timur Mufakharov, and Ailing Wang. 2025. "High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations" Universe 11, no. 3: 91. https://doi.org/10.3390/universe11030091
APA StyleGuo, S., An, T., Liu, Y., Liu, C., Xu, Z., Sotnikova, Y., Mufakharov, T., & Wang, A. (2025). High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations. Universe, 11(3), 91. https://doi.org/10.3390/universe11030091