Exploration of Sustainable Feed Resources and Pig Dietary Strategies

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: 10 October 2024 | Viewed by 2752

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Interests: swine nutrition and environment; pig feeding management

E-Mail Website
Guest Editor
Key Laboratory in Nanjing of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
Interests: healthy pig production; pig genetic resource exploration and innovative utilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food security and environmental protection significantly impact the sustainable development of global livestock production. The exploration and utilization of unconventional feed resources can lessen the competition between humans and animals for food and enhance the efficiency of using raw feed materials. Furthermore, it improves the pig feed's nutrient digestion and absorption efficiency, thereby reducing the excretion of nutrients (such as nitrogen and phosphorus). This reduction, in turn, aids in treating and utilizing manure, promoting environmental protection. An accurate evaluation of raw materials and dietary strategies (such as low protein diets, enzyme supplementation, pre-processing of feeds or ingredients, and liquid fermented feed) plays a crucial role in achieving these benefits.

Therefore, to explore the topics mentioned above, we announce a Special Issue concentrating on “Exploration of Sustainable Feed Resources and Pig Dietary Strategies”, and research paper and literature review submissions are welcome.

Prof. Dr. Jianjun Zang
Prof. Dr. Ruihua Huang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • feedstuff evaluation
  • nutrient availability
  • low-protein diet
  • feed additives
  • pre-processing
  • nitrogen excretion

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 1058 KiB  
Article
Fattening Pigs with Tannin-Rich Source (Ceratonia siliqua L.) and High Doses of Vitamin E: Effects on Growth Performance, Economics, Digestibility, Physiology, and Behaviour
by Diego Nicolas Bottegal, María Ángeles Latorre, Sandra Lobón, Marçal Verdú and Javier Álvarez-Rodríguez
Animals 2024, 14(13), 1855; https://doi.org/10.3390/ani14131855 - 22 Jun 2024
Viewed by 818
Abstract
This study aimed to assess the impact on growth, economic results, apparent nutrient digestibility (CTTAD), physiological variables, and animal behaviour when 214 fattening pigs (78 ± 8.5 kg of initial body weight and 130 ± 4.5 days of age) of both sexes (gilts [...] Read more.
This study aimed to assess the impact on growth, economic results, apparent nutrient digestibility (CTTAD), physiological variables, and animal behaviour when 214 fattening pigs (78 ± 8.5 kg of initial body weight and 130 ± 4.5 days of age) of both sexes (gilts and boars) were fed two levels of carob pulp (Cp, 0 vs. 20%) and two doses of vitamin E (Vit E, 30 vs. 300 IU/kg) for 40 days. No interaction effects between factors studied (Cp, Vit E, and sex) were observed on the variables. Most productive traits were unaffected by Cp or Vit E inclusion. However, the Cp increased the feed conversion ratio during the first 20 days. The Cp group showed a higher CTTAD of ether extract and hemicellulose but lower CTTAD of crude protein. Pigs fed Cp had a lower plasmatic urea content than the control group. The high Vit E doses increased the CTTAD of every nutrient and the plasmatic α-tocopherol content. The pigs fed Cp tended to spend more time eating in the early morning, likely to mitigate tannins’ astringent effects. Dietary inclusion of 20% Cp in finishing high-conformation pigs is possible without affecting overall performance though it reduces nutrient CTTAD and increases feeding cost. Supra-nutritional doses of Vit E do not affect pig performance but increase the α-tocopherol deposition with potential antioxidant effects. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
Show Figures

Graphical abstract

16 pages, 4223 KiB  
Article
Impacts of Dietary Standardized Ileal Digestible Lysine to Net Energy Ratio on Lipid Metabolism in Finishing Pigs Fed High-Wheat Diets
by Jiguang Wang, Haojie Li, He Zhu, Shuangshuang Xia, Fang Zhang, Hui Zhang, Chunxue Liu, Weijiang Zheng and Wen Yao
Animals 2024, 14(12), 1824; https://doi.org/10.3390/ani14121824 - 19 Jun 2024
Viewed by 406
Abstract
The present study aimed to investigate the impacts of dietary standardized ileal digestible lysine to net energy (SID Lys:NE) ratio on lipid metabolism in pigs fed high-wheat diets. Thirty-six crossbred growing barrows (65.20 ± 0.38 kg) were blocked into two treatment groups, fed [...] Read more.
The present study aimed to investigate the impacts of dietary standardized ileal digestible lysine to net energy (SID Lys:NE) ratio on lipid metabolism in pigs fed high-wheat diets. Thirty-six crossbred growing barrows (65.20 ± 0.38 kg) were blocked into two treatment groups, fed high-wheat diets with either a high SID Lys:NE ratio (HR) or a low SID Lys:NE ratio (LR). Each treatment group consisted of three replicates, with six pigs per pen in each replicate. The diminishing dietary SID Lys:NE ratio exhibited no adverse impacts on the carcass trait (p > 0.05) but increased the marbling score of the longissimus dorsi muscle (p < 0.05). Meanwhile, LR diets tended to increase the serum triglyceride concentration (p < 0.1). LR diets upregulated fatty acid transport protein 4 and acetyl-coA carboxylase α expression levels and downregulated the expression level of adipose triglyceride lipase (p < 0.05). LR diets improved energy metabolism via decreasing the expression levels of AMP-activated protein kinase (AMPK) α1, sirtuin 1 (SIRT1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) (p < 0.05). Additionally, LR diets stimulated hepatic bile acid synthesis via upregulating the expression levels of cytochrome P450 family 7 subfamily A member 1 and cytochrome P450 family 27 subfamily A member 1, and downregulating farnesol X receptor (FXR) and small heterodimer partner (SHP) expression levels (p < 0.05). A lowered SID Lys:NE ratio affected the colonic microbial composition, characterized by increased relative abundances of YRC22, Parabacteroides, Sphaerochaeta, and Bacteroides, alongside a decreased in the proportion of Roseburia, f_Lachnospiraceae_g_Clostridium, Enterococcus, Shuttleworthia, Exiguobacterium, Corynebacterium, Subdoligranulum, Sulfurospirillum, and Marinobacter (p < 0.05). The alterations in microbial composition were accompanied by a decrease in colonic butyrate concentration (p < 0.1). The metabolomic analysis revealed that LR diets affected primary bile acid synthesis and AMPK signaling pathway (p < 0.05). And the mantel analysis indicated that Parabacteroides, Sphaerochaeta, f_Lachnospiraceae_g_Clostridium, Shuttleworthia, and Marinobacter contributed to the alterations in body metabolism. A reduced dietary SID Lys:NE ratio improves energy metabolism, stimulates lipogenesis, and inhibits lipolysis in finishing pigs by regulating the AMPKα/SIRT1/PGC-1α pathway and the FXR/SHP pathway. Parabacteroides and Sphaerochaeta benefited bile acids synthesis, whereas f_Lachnospiraceae_g_Clostridium, Shuttleworthia, and Marinobacter may contribute to the activation of the AMPK signaling pathway. Overall, body metabolism and colonic microbiota collectively controlled the lipid metabolism in finishing pigs. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
Show Figures

Figure 1

16 pages, 1808 KiB  
Article
Effect of Miscellaneous Meals Replacing Soybean Meal in Feed on Growth Performance, Serum Biochemical Parameters, and Microbiota Composition of 25–50 kg Growing Pigs
by Xianliang Zhan, Lei Hou, Zhentao He, Shuting Cao, Xiaolu Wen, Shuai Liu, Yaojie Li, Shaozhen Chen, Huayu Zheng, Dongyan Deng, Kaiguo Gao, Xuefen Yang, Zongyong Jiang and Li Wang
Animals 2024, 14(9), 1354; https://doi.org/10.3390/ani14091354 - 30 Apr 2024
Viewed by 1046
Abstract
The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content [...] Read more.
The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25–50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn–soybean meal (CON), corn–soybean–miscellaneous meals (CSM), and corn–miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25–50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25–50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25–50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
Show Figures

Figure 1

Back to TopTop