The Biophysics of Vocal Onset

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biosignal Processing".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 4378

Special Issue Editors


E-Mail Website
Guest Editor
Federal Agency for Occupational Risks, Brussels, Belgium
Interests: biophysics; vocal onset; voice acoustics; voice synthesis

E-Mail Website
Co-Guest Editor
Department of Information Engineering, Università degli Studi di Firenze, 50139 Firenze, Italy
Interests: biomedical signal processing; voice analysis; modeling of biomedical signals; parametric spectral estimation; autoregressive models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The onset of vocal fold vibration is a complex transient event, in which the forces at play progressively adjust until a stationary state is reached. The acting elements are lung pressure, intraglottal pressure, myoelastic tension of the vocal folds, glottal impedance, vocal tract inertance, intraglottal turbulence and vocal tract inertance.

Advanced experimental biomechanics and fluid dynamics—in mechanical models and in vivo—as well as computational simulations are currently the key components for a comprehensive understanding of the diverse physiological and pathological conditions of voice onset. In pathology, the accurate synchronization of glottal adduction and the building up of subglottal pressure is failing. Moreover, each of these normal or irregular conditions is characterized by specific acoustic features.

Recent progress in high-speed imaging techniques, image segmentation, acoustic analysis and predictive computer simulations has shed new light on the specific patterns of the different types of onset, which is suited  for differentiation via machine learning. This can result in practical applications in the pedagogy of artistic voice (singing/acting), in the early detection of voice diseases, in voice synthesis, in automated speech recognition and in substitution voicing.

Therefore, this Special Issue on “The Biophysics of Vocal Onset” will focus on original research papers and comprehensive reviews, dealing with cutting-edge experimental and computational approaches and models, and also on an evolutionary perspective of the methodology.

Dr. Philippe Dejonckere
Prof. Dr. Claudia Manfredi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biophysics
  • vocal onset
  • intraglottal pressure
  • transglottal flow
  • glottal area
  • intraglottal turbulence
  • videokymography
  • glottography
  • high-speed imaging
  • voice acoustics
  • voice synthesis
  • machine learning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

18 pages, 7855 KiB  
Article
Comparison of Aerodynamic and Elastic Properties in Tissue and Synthetic Models of Vocal Fold Vibrations
by Jacob Michaud-Dorko, Charles Farbos de Luzan, Gregory R. Dion, Ephraim Gutmark and Liran Oren
Bioengineering 2024, 11(8), 834; https://doi.org/10.3390/bioengineering11080834 - 15 Aug 2024
Viewed by 903
Abstract
Three laryngeal models were used to investigate the aerodynamic and elastic properties of vocal fold vibration: cadaveric human, excised canine, and synthetic silicone vocal folds. The aim was to compare the characteristics of these models to enhance our understanding of phonatory mechanisms. Flow [...] Read more.
Three laryngeal models were used to investigate the aerodynamic and elastic properties of vocal fold vibration: cadaveric human, excised canine, and synthetic silicone vocal folds. The aim was to compare the characteristics of these models to enhance our understanding of phonatory mechanisms. Flow and medial glottal wall geometry were acquired via particle image velocimetry. Elastic properties were assessed from force–displacement tests. Relatively, the human larynges had higher fundamental frequency values, while canine and synthetic models exhibited greater flow rates. Canine models demonstrated the highest divergence angles and vertical stiffness gradients followed by the human model, both displaying flow separation vortices during closing. Synthetic models, whose advantage is their accessibility and repeatability, displayed the lowest glottal divergence angles and total circulation values compared to tissue models with no flow separation vortices. The elasticity tests revealed that tissue models showed significant hysteresis and vertical stiffness gradients, unlike the synthetic models. These results underscore the importance of model selection based on specific research needs and highlight the potential of canine and synthetic models for controlled experimental studies in phonation. Full article
(This article belongs to the Special Issue The Biophysics of Vocal Onset)
Show Figures

Graphical abstract

14 pages, 1329 KiB  
Article
Relative Fundamental Frequency: Only for Hyperfunctional Voices? A Pilot Study
by Sol Ferrán, Carla Rodríguez-Zanetti, Octavio Garaycochea, David Terrasa, Carlos Prieto-Matos, Beatriz del Río, Maria Pilar Alzuguren and Secundino Fernández
Bioengineering 2024, 11(5), 475; https://doi.org/10.3390/bioengineering11050475 - 10 May 2024
Viewed by 1020
Abstract
(1) Background: Assessing phonatory disorders due to laryngeal biomechanical alterations requires aerodynamic analysis, assessing subglottic pressure, transglottic flow, and laryngeal resistance. This study explores whether the acoustic parameter, the relative fundamental frequency (RFF), can be studied using the current acoustic analysis protocol at [...] Read more.
(1) Background: Assessing phonatory disorders due to laryngeal biomechanical alterations requires aerodynamic analysis, assessing subglottic pressure, transglottic flow, and laryngeal resistance. This study explores whether the acoustic parameter, the relative fundamental frequency (RFF), can be studied using the current acoustic analysis protocol at the University of Navarra’s voice laboratory and its association with pathologies linked to laryngeal biomechanical alterations. (2) Methods: A retrospective cohort study included patients diagnosed with muscular tension dysphonia, organic lesions of the vocal fold, and vocal fold paralysis (VFP) at the Clínica Universidad de Navarra from 2019 to 2021. Each patient underwent endoscopic laryngeal exploration, followed by acoustic study, RFF calculation, and an aerodynamic study. Additionally, a control group was recruited. (3) Results: 79 patients and 22 controls were studied. Two-way ANOVA showed significant effects for groups and cycles in offset and onset cycles. Statistically significant differences were observed in cycle 1 onset among all groups and in cycles 1 and 2 between the control group and non-healthy groups. (4) Conclusions: RFF is a valuable indicator of phonatory biomechanics, distinguishing healthy and pathological voices and different disorders. RFF in onset cycles offers a cost-effective, accurate method for assessing biomechanical disorders without complex aerodynamic analyses. This study describes RFF values in VFP for the first time, revealing differences regardless of aerodynamic patterns. Full article
(This article belongs to the Special Issue The Biophysics of Vocal Onset)
Show Figures

Figure 1

16 pages, 6324 KiB  
Article
Simultaneous High-Speed Video Laryngoscopy and Acoustic Aerodynamic Recordings during Vocal Onset of Variable Sound Pressure Level: A Preliminary Study
by Peak Woo
Bioengineering 2024, 11(4), 334; https://doi.org/10.3390/bioengineering11040334 - 29 Mar 2024
Cited by 1 | Viewed by 1049
Abstract
Voicing: requires frequent starts and stops at various sound pressure levels (SPL) and frequencies. Prior investigations using rigid laryngoscopy with oral endoscopy have shown variations in the duration of the vibration delay between normal and abnormal subjects. However, these studies were not physiological [...] Read more.
Voicing: requires frequent starts and stops at various sound pressure levels (SPL) and frequencies. Prior investigations using rigid laryngoscopy with oral endoscopy have shown variations in the duration of the vibration delay between normal and abnormal subjects. However, these studies were not physiological because the larynx was viewed using rigid endoscopes. We adapted a method to perform to perform simultaneous high-speed naso-endoscopic video while simultaneously acquiring the sound pressure, fundamental frequency, airflow rate, and subglottic pressure. This study aimed to investigate voice onset patterns in normophonic males and females during the onset of variable SPL and correlate them with acoustic and aerodynamic data. Materials and Methods: Three healthy males and three healthy females were studied by simultaneous high-speed video laryngoscopy and recording with the production of the gesture [pa:pa:] at soft, medium, and loud voices. The fiber optic endoscope was threaded through a pneumotachograph mask for the simultaneous recording and analysis of acoustic and aerodynamic data. Results: The average increase in the sound pressure level (SPL) for the group was 15 dB, from 70 to 85 dB. The fundamental frequency increased by an average of 10 Hz. The flow was increased in two subjects, reduced in two subjects, and remained the same in two subjects as the SPL increased. There was a steady increase in the subglottic pressure from soft to loud phonation. Compared to soft to medium phonation, a significant increase in glottal resistance was observed with medium-to-loud phonation. Videokymogram analysis showed the onset of vibration for all voiced tokens without the need for full glottis closure. In loud phonation, there is a more rapid onset of a larger amplitude and prolonged closure of the glottal cycle; however, more cycles are required to achieve the intended SPL. There was a prolonged closed phase during loud phonation. Fast Fourier transform (FFT) analysis of the kymography waveform signal showed a more significant second- and third-harmonic energy above the fundamental frequency with loud phonation. There was an increase in the adjustments in the pharynx with the base of the tongue tilting, shortening of the vocal folds, and pharyngeal constriction. Conclusion: Voice onset occurs in all modalities, without the need for full glottal closure. There was a more significant increase in glottal resistance with loud phonation than that with soft or middle phonation. Vibration analysis of the voice onset showed that more time was required during loud phonation before the oscillation stabilized to a steady state. With increasing SPL, there were significant variations in vocal tract adjustments. The most apparent change was the increase in tongue tension with posterior displacement of the epiglottis. There was an increase in pre-phonation time during loud phonation. Patterns of muscle tension dysphonia with laryngeal squeezing, shortening of the vocal folds, and epiglottis tilting with increasing loudness are features of loud phonation. These observations show that flexible high-speed video laryngoscopy can reveal observations that cannot be observed with rigid video laryngoscopy. An objective analysis of the digital kymography signal can be conducted in selected cases. Full article
(This article belongs to the Special Issue The Biophysics of Vocal Onset)
Show Figures

Figure 1

Other

Jump to: Research

7 pages, 230 KiB  
Perspective
Investigation Methods for Vocal Onset—A Historical Perspective
by Bernhard Richter, Matthias Echternach and Louisa Traser
Bioengineering 2024, 11(10), 989; https://doi.org/10.3390/bioengineering11100989 - 30 Sep 2024
Viewed by 689
Abstract
The topic of phonation onset gestures is of great interest to singers, acousticians, and voice physiologists alike. The vocal pedagogue and voice researcher Manuel Garcia, in the mid-19th century, first coined the term “coup de la glotte”. Given that Garcia defined the process [...] Read more.
The topic of phonation onset gestures is of great interest to singers, acousticians, and voice physiologists alike. The vocal pedagogue and voice researcher Manuel Garcia, in the mid-19th century, first coined the term “coup de la glotte”. Given that Garcia defined the process as “a precise articulation of the glottis that leads to a precise and clean tone attack”, the term can certainly be linked to the concept of “vocal onset” as we understand it today. However, Garcia did not, by any means, have the technical measures at his disposal to investigate this phenomenon. In order to better understand modern ways of investigating vocal onset—and the limitations that still exist—it seems worthwhile to approach the subject from a historical perspective. High-speed video laryngoscopy (HSV) can be regarded as the gold standard among today’s examination methods. Nonetheless, it still does not allow the three-dimensionality of vocal fold vibrations to be examined as it relates to vocal onset. Clearly, measuring methods in voice physiology have developed fundamentally since Garcia’s time. This offers grounds for hope that the still unanswered questions around the phenomenon of vocal onset will be resolved in the near future. One promising approach could be to develop ultra-fast three-dimensional MRI further. Full article
(This article belongs to the Special Issue The Biophysics of Vocal Onset)
Back to TopTop