Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6386 KiB  
Article
Design of a Depth Control Mechanism for an Anguilliform Swimming Robot
by Ahmed Islam and Brandon Taravella
Biomimetics 2021, 6(2), 39; https://doi.org/10.3390/biomimetics6020039 - 9 Jun 2021
Cited by 1 | Viewed by 3810
Abstract
This paper discusses the design and implementation of a depth control mechanism for an anguilliform swimming robot. Researchers analyzed three different methods of controlling the depth of the robot, including out-of-plane thrust direction, use of foil on the head and buoyancy control at [...] Read more.
This paper discusses the design and implementation of a depth control mechanism for an anguilliform swimming robot. Researchers analyzed three different methods of controlling the depth of the robot, including out-of-plane thrust direction, use of foil on the head and buoyancy control at the head and tail. It was determined that buoyancy control at the head and tail was the best method for controlling depth and pitch, given typical forward speeds of the robot. Details are given into the design of this mechanism, including a stress analysis on a critical part, as well as the impacts that these modifications have on the required torque of the drive servos. Full article
Show Figures

Figure 1

14 pages, 6882 KiB  
Article
Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling
by Megan Peeks and Lidia Badarnah
Biomimetics 2021, 6(2), 24; https://doi.org/10.3390/biomimetics6020024 - 29 Mar 2021
Cited by 13 | Viewed by 5978
Abstract
The overheating of buildings and their need for mechanical cooling is a growing issue as a result of climate change. The main aim of this paper is to examine the impact of surface texture on heat loss capabilities of concrete panels through evaporative [...] Read more.
The overheating of buildings and their need for mechanical cooling is a growing issue as a result of climate change. The main aim of this paper is to examine the impact of surface texture on heat loss capabilities of concrete panels through evaporative cooling. Organisms maintain their body temperature in very narrow ranges in order to survive, where they employ morphological and behavioral means to complement physiological strategies for adaptation. This research follows a biomimetic approach to develop a design solution. The skin morphology of elephants was identified as a successful example that utilizes evaporative cooling and has, therefore, informed the realization of a textured façade panel. A systematic process has been undertaken to examine the impact of different variables on the cooling ability of the panels, bringing in new morphological considerations for surface texture. The results showed that the morphological variables of assembly and depth of texture have impact on heat loss, and the impact of surface area to volume (SA:V) ratios on heat loss capabilities varies for different surface roughness. This study demonstrates the potential exploitation of morphological adaptation to buildings, that could contribute to them cooling passively and reduce the need for expensive and energy consuming mechanical systems. Furthermore, it suggests areas for further investigation and opens new avenues for novel thermal solutions inspired by nature for the built environment. Full article
(This article belongs to the Special Issue Biomimetic Architectural and Urban Design)
Show Figures

Figure 1

20 pages, 6257 KiB  
Article
Bio-Inspired Design of a Porous Resorbable Scaffold for Bone Reconstruction: A Preliminary Study
by Daria Scerrato, Alberto Maria Bersani and Ivan Giorgio
Biomimetics 2021, 6(1), 18; https://doi.org/10.3390/biomimetics6010018 - 10 Mar 2021
Cited by 27 | Viewed by 4502
Abstract
The study and imitation of the biological and mechanical systems present in nature and living beings always have been sources of inspiration for improving existent technologies and establishing new ones. Pursuing this line of thought, we consider an artificial graft typical in the [...] Read more.
The study and imitation of the biological and mechanical systems present in nature and living beings always have been sources of inspiration for improving existent technologies and establishing new ones. Pursuing this line of thought, we consider an artificial graft typical in the bone reconstruction surgery with the same microstructure of the bone living tissue and examine the interaction between these two phases, namely bone and the graft material. Specifically, a visco-poroelastic second gradient model is adopted for the bone-graft composite system to describe it at a macroscopic level of observation. The second gradient formulation is employed to consider possibly size effects and as a macroscopic source of interstitial fluid flow, which is usually regarded as a key factor in bone remodeling. With the help of the proposed formulation and via a simple example, we show that the model can be used as a graft design tool. As a matter of fact, an optimization of the characteristics of the implant can be carried out by numerical investigations. In this paper, we observe that the size of the graft considerably influences the interaction between bone tissue and artificial bio-resorbable material and the possibility that the bone tissue might substitute more or less partially the foreign graft for better bone healing. Full article
(This article belongs to the Special Issue Bioinspired Intelligence II)
Show Figures

Figure 1

Back to TopTop