Advances in Biomimetics: Patents from Nature

A special issue of Biomimetics (ISSN 2313-7673).

Deadline for manuscript submissions: 31 August 2025 | Viewed by 3240

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan 430072, China
Interests: bioinspired adhesives; superwettability; drag reduction, porous material; additive manufacturing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Bioinspired Soft Robotics (BSR), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
Interests: plant-inspired robotics; self-growing robots; soft robotics; biomimetics; robotics for biology; variable stiffness soft actuators; plant-hybrid energy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
Interests: biomimetic materials; materials for medicine; nanotechnology

Special Issue Information

Dear Colleagues,

Biomimetics research on living systems attempts to transfer their properties to engineering applications. Biological materials, structures, and processes are predominantly based on the combination of various effects at different scales: the nano-, micro-, meso-, and macroscale. This Special Issue focuses on recent advances in various areas of biomimetics: (1) materials and structures; (2) designs, constructions, and devices; (3) surfaces and interfaces; (4) architecture and climatization; (5) locomotion and bioinspired robotics; (6) sensorics, information processing and control; (7) chemical biomimetics; and (8) energy biomimetics. We also encourage the submission of manuscripts that explore the relationships between these topics and are devoted to the development of biomimetic methodologies.

This Special Issue also welcomes the submission of papers that focus on the proper identification of the underlying principles in nature, and manuscripts that apply findings regarding exising systems to modern technologies. This Special Issue of Biomimetics calls for theoretical, experimental, and review articles related to the fields of biology, physics, material science and engineering.

Prof. Dr. Stanislav N. Gorb
Prof. Dr. Longjian Xue
Dr. Barbara Mazzolai
Prof. Dr. Phillip B. Messersmith
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomimetics of materials and structures
  • biomimetic design, constructions, and devices
  • biomimetic surfaces and interfaces
  • bioinspired architecture and climatization
  • locomotion and bioinspired robotics
  • bioinspired sensorics, information processing and control
  • biomimetic processing, optimisation, management
  • biomimetic processing and molecular biomimetics
  • energy biomimetics
  • development of biomimetic methodology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6674 KiB  
Article
Model Predictive Control with Optimal Modelling for Pneumatic Artificial Muscle in Rehabilitation Robotics: Confirmation of Validity Though Preliminary Testing
by Dexter Felix Brown and Sheng Quan Xie
Biomimetics 2025, 10(4), 208; https://doi.org/10.3390/biomimetics10040208 - 28 Mar 2025
Viewed by 250
Abstract
This paper presents a model predictive controller (MPC) based on dynamic models generated using the Particle Swarm Optimisation method for accurate motion control of a pneumatic artificial muscle (PAM) for application in rehabilitation robotics. The physical compliance and lightweight nature of PAMs make [...] Read more.
This paper presents a model predictive controller (MPC) based on dynamic models generated using the Particle Swarm Optimisation method for accurate motion control of a pneumatic artificial muscle (PAM) for application in rehabilitation robotics. The physical compliance and lightweight nature of PAMs make them desirable for use in the field but also introduce nonlinear dynamic properties which are difficult to accurately model and control. As well as the MPC, three other control systems were examined for a comparative study: a particle-swarm optimised proportional-integral-derivative controller (PSO-PID), an iterative learning controller (ILC), and classical PID control. A series of different waveforms were used as setpoints for each controller, including addition of external loading and simulated disturbance, for a system consisting of a single PAM. Based on the displacement error measured for each experiment, the PID controller performed worst with the largest error values and an issue with oscillating about the setpoint. PSO-PID performed better but still poorly compared with the other intelligent controllers, as well as still exhibiting oscillation, which is undesirable in any human–robot interaction as it can heavily impact the comfort and safety of the system. ILC performed well with rapid convergence to steady-state and low-error values, as well as mitigation of loads and disturbance; however, it performed poorly under changing frequency of input. MPC generally performed the best of the controllers tested here, with the lowest error values and a rapid response to changes in setpoint, as well as no required learning period due to the predictive algorithm. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

14 pages, 18226 KiB  
Article
Smart Bio-Nanocoatings with Simple Post-Synthesis Reversible Adjustment
by Mikhail Kryuchkov, Zhehui Wang, Jana Valnohova, Vladimir Savitsky, Mirza Karamehmedović, Marc Jobin and Vladimir L. Katanaev
Biomimetics 2025, 10(3), 163; https://doi.org/10.3390/biomimetics10030163 - 7 Mar 2025
Viewed by 602
Abstract
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using [...] Read more.
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using atomic force microscopy (AFM), we analyzed Coleoptera corneal nanocoatings and identified dimpled nanostructures that can transform into maze-like/nipple-like protrusions. Further analysis suggested that these modifications result from a temporary, self-assembled process influenced by surface adhesion. We identified cuticular protein 7 (CP7) as a key component of dimpled nanocoatings. Biophysical analysis revealed CP7’s unique self-assembly properties, allowing us to replicate its nanopatterning ability in vitro. Our findings demonstrate CP7’s potential for bioinspired nanocoatings and provide insights into the evolutionary mechanisms of nanostructure formation. This research paves the way for cost-effective, biomimetic nanopatterning strategies with applications in nanotechnology and biomedicine. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

28 pages, 10675 KiB  
Article
Mechanics of Bio-Inspired Protective Scales
by Antonio Pantano and Vincenzo Baiamonte
Biomimetics 2025, 10(2), 75; https://doi.org/10.3390/biomimetics10020075 - 25 Jan 2025
Viewed by 870
Abstract
Natural armors found in animals like fish and armadillos offer inspiration for designing protective systems that balance puncture resistance and flexibility. Although segmented armors have been used historically, modern applications are hindered by a limited understanding of their mechanics. This study addresses these [...] Read more.
Natural armors found in animals like fish and armadillos offer inspiration for designing protective systems that balance puncture resistance and flexibility. Although segmented armors have been used historically, modern applications are hindered by a limited understanding of their mechanics. This study addresses these challenges by presenting two novel bio-inspired scale structures with overlapping and staggered configurations, modeled after the elasmoid designs found in fish. Their shapes differ significantly from other artificial scales commonly described in the literature, which are typically flat. Instead, these scales feature a support that extends vertically from the substrate, transitioning into an inclined surface that serves as the protective component. Finite element method tests evaluated their performance in puncture resistance and flexibility. The results showed that one type of scale provided better puncture resistance, while the other type offered greater flexibility. These findings highlight how small geometric variations can significantly influence the balance between protection and flexibility. The results offer new insights into the mechanisms of natural armor and propose innovative designs for personal protective equipment, such as bulletproof vests, protective gloves, and fireproof systems. The finite element simulations employed to test the protective systems can also serve as valuable tools for the scientific community to assess and refine designs. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

Back to TopTop