You are currently on the new version of our website. Access the old version .

Coatings

Coatings is an international, peer-reviewed, open access journal on coatings and surface engineering, published monthly online by MDPI.
The Korean Tribology Society (KTS) and Chinese Society of Micro-Nano Technology (CSMNT) are affiliated with Coatings and their members receive discounts on the article processing charges.
Quartile Ranking JCR - Q2 (Physics, Applied)

All Articles (11,935)

Silica-rich dust intrusion is a persistent challenge for lubrication systems in agricultural machinery, where abrasive third-body particles can accelerate wear and shorten component service life. Here, molecular dynamics simulations are employed to elucidate how SiO2 nanoparticle contamination degrades polyalphaolefin (PAO) boundary lubrication at the atomic scale. Two confined sliding models are compared: a pure PAO film and a contaminated PAO film containing 7 wt% SiO2 nanoparticles between crystalline Fe substrates under a constant normal load and sliding velocity. The contaminated system exhibits a higher steady-state friction force, faster lubricant film disruption and migration, and consistently higher interfacial temperatures, indicating intensified energy dissipation. Substrate analyses reveal deeper and stronger von Mises stress penetration, increased severe plastic shear strain, elevated Fe potential energy associated with defect accumulation, and reduced structural order. Meanwhile, PAO molecules store more intramolecular deformation energy (bond, angle, and dihedral terms), reflecting stress concentration and disturbed shear alignment induced by nanoparticles. These results clarify the multi-pathway mechanisms by which abrasive SiO2 contaminants transform PAO from a protective boundary film into an agent promoting abrasive wear, providing insights for designing wear-resistant lubricants and improved filtration strategies for particle-laden applications.

11 January 2026

Schematic of the MD simulation models. Side views of the initial atomic configurations for (a) the pure PAO lubrication system and (b) the PAO system contaminated with SiO2 particles.

Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts have emerged as attractive candidates due to their abundance, compositional tunability, and effective promotion of hydrogen sorption reactions in MgH2 systems. This review critically summarizes recent progress in Fe-based catalysts for MgH2 hydrogen storage, encompassing elemental Fe, iron oxides, Fe-based alloys, and advanced composite catalysts with nanostructured and multicomponent architectures. Mechanistic insights into catalytic enhancement are discussed, with particular emphasis on interfacial electron transfer, catalytic phase evolution, hydrogen diffusion pathways, and synergistic effects between Fe-containing species and MgH2, supported by experimental and theoretical studies. In addition to catalytic activity, key stability challenges—including catalyst agglomeration, phase segregation, interfacial degradation, and performance decay during cycling—are analyzed in relation to structural evolution and kinetic–thermodynamic trade-offs. Finally, a roadmap for the scalable design of Fe-based catalysts is proposed, highlighting rational catalyst selection, interface engineering, and compatibility with large-scale synthesis. This review aims to bridge fundamental mechanisms with practical design considerations for developing durable and high-performance MgH2-based hydrogen storage materials.

11 January 2026

Zeolite imidazolate frameworks (ZIFs)-derived carbon materials have garnered widespread attention as peroxymonosulfate (PMS) activators in removing antibiotics because of their excellent catalytic performance. However, most carbon materials derived from ZIFs exhibit limited efficacy in treating high-concentration (>10 ppm) antibiotic wastewater, and their synthesis methods are environmentally unfriendly. Herein, we develop a simple and environmentally friendly preparation method to synthesize a new type of nitrogen-doped carbon-supported carbon nanotubes coated with cobalt nanoparticle (Co-CNTs@NC) composites via high-temperature calcination of cobalt–zinc bimetallic ZIFs. The material characterization results confirm the successful preparation of Co-CNTs@NC composites featuring a high specific surface area (512.13 m2/g) and a Co content of 5.38 wt%. Across an initial pH range of 3.24–9.00, the Co-CNTs@NC/PMS catalytic system achieved over 84.17% degradation of 20 mg/L tetracycline hydrochloride within 90 min, demonstrating its favorable pH tolerance. The singlet oxygen-dominated degradation mechanism was confirmed by quenching experiments and electron paramagnetic resonance characterization. This work can provide technical guidance and reference significance for the preparation of metal–carbon materials derived from ZIFs with excellent efficiency of removal of high-concentration antibiotics.

11 January 2026

To improve the fatigue life of high-strength bolts, this study builds upon conventional thread rolling by introducing a localized rolling reinforcement process specifically at the thread root. Experimental specimens were prepared from 42CrMo high-strength bolts using a combined manufacturing technique that integrates thread forming and root rolling. A comparative analysis was conducted to evaluate the fatigue performance of bolts with and without the root rolling reinforcement. The experimental results demonstrated that the thread root rolling treatment further refines the surface grains beyond the effects of standard thread rolling. At a rolling force of 2.5 kN, the surface microhardness increased from the original 500 HV0.2 to 540 HV0.2. The process also improved surface finish, reduced grain size, and increased dislocation density. The optimal enhancement was achieved at a rolling force of 3.5 kN, resulting in an approximately 11-fold improvement in fatigue life. Fractographic analysis via Scanning Electron Microscopy (SEM) indicated a reduced number of crack initiation sites. This study confirms the effectiveness of the proposed rolling reinforcement process, offering a viable technical pathway for optimizing the anti-fatigue manufacturing of high-strength bolts.

11 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Polymer Thin Films
Reprint

Polymer Thin Films

From Fundamentals to Applications (Second Edition)
Editors: Mohor Mihelčič
Coatings for Cultural Heritage
Reprint

Coatings for Cultural Heritage

Cleaning, Protection and Restoration
Editors: Yumin Du

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Coatings - ISSN 2079-6412