- Article
Investigation on the Effect of Detonation Nanodiamonds on the Properties of Polymeric Active Food Packaging, Part I: Biological Activity, Surface Hydrophobicity, and Thermal Stability of Baseline Films
- Julia Mundziel,
- Leon Kukiełka and
- Totka Bakalova
- + 5 authors
This article presents the results of the first stage of a four-phase research program aimed at the comprehensive evaluation and enhancement in the functional properties of polymeric packaging films intended for active food packaging systems through their modification with detonative nanodiamonds (DND). Stage I involved the characterization of ten commercial single- and multi-layer films without the addition of DND, differing in structure, base material, thickness, and intended application. The scope of analyses included the assessment of biological and physicochemical properties relevant to food contact, such as surface wettability (contact angle), thermal stability (TGA, DSC), antimicrobial and antiviral activity (using E. coli and M. luteus models), as well as the quality of thermal seals examined by SEM. Biological activity was assessed in accordance with ISO 22196:2011. The results revealed significant differences among the tested samples in terms of microbiological resistance, surface properties, and thermal stability. Films with printed layers exhibited the highest antimicrobial activity, whereas some polypropylene samples showed no activity at all or even supported microbial survival. Cross-sectional analysis of welds indicated that the quality of thermal seals is strongly dependent on the surface properties of the base material. The obtained results provide a reference point for subsequent research stages, in which DND-modified films will be analyzed regarding their effects on mechanical, barrier, and biological properties. Preliminary trials with nanodiamonds confirmed their high application potential and the possibility of producing films with increased hydrophilicity or hydrophobicity and durability, which are crucial for the development of modern active food packaging systems.
7 January 2026




![Relationships between the definitions of active, smart, and nano-packaging in the context of intelligent packaging systems. Reprinted with permission from [14]. Copyright 2025 Elsevier.](https://mdpi-res.com/coatings/coatings-16-00072/article_deploy/html/images/coatings-16-00072-g001-550.jpg)

