Bioconversion of Lignocellulosic Materials to Value-Added Products

A topical collection in Fermentation (ISSN 2311-5637). This collection belongs to the section "Industrial Fermentation".

Viewed by 1570

Editors


E-Mail Website
Guest Editor
Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
Interests: yeast cytology; yeast physiology; yeast biotechnology; yeast response to stress treatments; intracellular protective reactions; dehydration-rehydration of microorganisms; anhydrobiosis; bioconversion of lignocellulose
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Many kinds of natural waste material have the potential to be converted into high-value products, including biofuels, pharmaceuticals, vitamins, cosmetics, and fine chemicals. Other examples include lignocellulosic materials, including various cellulose-containing energy crops, forestry waste, agriculture residues, and wastes (from biorefineries, pulp mills, and other industries). Moreover, lignocellulose is a renewable resource that is inexpensive and readily available in most parts of the world. Its constituents—hemicellulose, cellulose, and lignin—each have value for microbial bioconversions. Lignocellulosic biomass can contribute to global energy supply without competing with the need for agricultural food production.  

This Topical Collection invites research studies and review articles relating to the conversion of lignocellulose to value-added products, including pre-treatments. Topics include (but are not restricted to) the following:

  • The acquirement of different products from lignocellulose;
  • Bioprospecting for novel microbes;
  • The use of microbial consortia;
  • The toxicity of breakdown products;
  • Bioinformatic approaches;
  • Metabolic engineering;
  • The manipulation of phenotypic plasticity;
  • Enzyme kinetics;
  • Anaerobic fermentation;
  • Substrate formulation and pre-treatment;
  • Combining biological and chemical approaches;
  • Cell-free systems;
  • Renewable energy;
  • Bioprocess optimization.

Prof. Dr. Alexander Rapoport
Prof. Dr. Pietro Buzzini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioprocessing
  • cellulose
  • fermentation
  • hemicellulose
  • lignin
  • lignocellulose
  • metabolic engineering
  • microbial factories
  • value-added products

Related Special Issues

Published Papers (1 paper)

2024

19 pages, 1409 KiB  
Article
Advancing Thermophilic Anaerobic Digestion of Corn Whole Stillage: Lignocellulose Decomposition and Microbial Community Characterization
by Alnour Bokhary, Fuad Ale Enriquez, Richard Garrison and Birgitte Kiaer Ahring
Fermentation 2024, 10(6), 306; https://doi.org/10.3390/fermentation10060306 - 8 Jun 2024
Cited by 3 | Viewed by 1120
Abstract
Converting corn grains into bioethanol is an expanding practice for sustainable fuel production, but this is accompanied by the production of large quantities of by-products such as whole stillage. In the present study, the influence of advanced wet oxidation and steam explosion (AWOEx) [...] Read more.
Converting corn grains into bioethanol is an expanding practice for sustainable fuel production, but this is accompanied by the production of large quantities of by-products such as whole stillage. In the present study, the influence of advanced wet oxidation and steam explosion (AWOEx) pretreatment on biogas production and lignocellulose decomposition of corn whole stillage (CWS) was evaluated using semi-continuous thermophilic reactors. The digestion of the CWS was shown to be feasible with an organic loading rate (OLR) of 1.12 ± 0.03 kg VS/m3 day and a hydraulic retention time (HRT) of 30 days, achieving a methane yield of 0.75 ± 0.05 L CH4/g VSfed for untreated stillage and 0.86 ± 0.04 L CH4/g VSfed for pretreated stillage, corresponding with an increase in methane yield of about 15%. However, the reactors showed unstable performance with the highest investigated OLRs and shortest HRTs. Under optimal conditions, the conversion efficiencies of COD, cellulose, hemicellulose, and lignin were 88, 95, 97, and 59% for pretreated CWS, and 86, 94, 95, and 51% for untreated CWS, respectively. Microbial community analysis showed that Proteiniphilum, MBA03, and Acetomicrobium were the dominant genera in the digestate and were likely responsible for the conversion of proteins and volatile fatty acids in CWS. Full article
Show Figures

Figure 1

Back to TopTop