Advanced Photoresponsive Materials for Anticancer

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials for Cancer Therapies".

Deadline for manuscript submissions: closed (20 November 2024) | Viewed by 1032

Special Issue Editor


E-Mail Website
Guest Editor
School of Radiation Medicine and Protection, Soochow University, Suzhou, China
Interests: nanomedicine; photoactive drug; targeted delivery; phototherapy; radiomedicine

Special Issue Information

Dear Colleagues,

Light, as an emerging external stimulus for photoresponsive materials, features ultrahigh spatiotemporal precision. Tailoring advanced photoresponsive materials has a significant impact on a wealth of domains, such as biocatalysis, optical sensors, light-harvesting systems, molecular imaging, and phototherapeutics. In particular, high-performance photoresponsive biomaterials offer promising opportunities for effective cancer precision therapy in an unprecedented manner. This Special Issue aims to direct the development of more advanced photoresponsive biomaterials for cancer theranostics and related applications. Both research and review articles focusing on advanced biomedical photonics are welcome.

Prof. Dr. Zhengqing Guo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photoactive biomaterials
  • photodynamic therapy
  • photothermal therapy
  • photoimmunotherapy
  • fluorescence bioimaging
  • biophotonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3483 KiB  
Article
Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy
by Anastasia I. Kornienko, Maria A. Teplonogova, Marina P. Shevelyova, Matvei A. Popkov, Anton L. Popov, Vladimir E. Ivanov and Nelli R. Popova
J. Funct. Biomater. 2024, 15(12), 373; https://doi.org/10.3390/jfb15120373 - 10 Dec 2024
Viewed by 564
Abstract
X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF3) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF3-FMN NPs has [...] Read more.
X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF3) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF3-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.42. It has been demonstrated that CeF3-FMN NPs exhibit pH-dependent radiation-induced redox activity when exposed to X-rays. This activity results in the generation of reactive oxygen species, which is associated with the scintillation properties of cerium and the transfer of electrons to FMN. The synthesized NPs have been demonstrated to exhibit minimal cytotoxicity towards normal cells (NCTC L929 fibroblasts) but are more toxic to tumor cells (epidermoid carcinoma A431). Concurrently, the synthesized NPs (CeF3 and CeF3-FMN NPs) demonstrate a pronounced selective radiosensitizing effect on tumor cells at concentrations of 10−7 and 10−3 M, resulting in a significant reduction in their clonogenic activity, increasing radiosensitivity for cancer cells by 1.9 times following X-ray irradiation at a dose of 3 to 6 Gy. In the context of normal cells, these nanoparticles serve the function of antioxidants, maintaining a high level of clonogenic activity. Functional nanoscintillators on the basis of cerium fluoride can be used as part of the latest technologies for the treatment of tumors within the framework of X-PDT. Full article
(This article belongs to the Special Issue Advanced Photoresponsive Materials for Anticancer)
Show Figures

Figure 1

Back to TopTop