Feature Papers in Dental Biomaterials (2nd Edition)

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Dental Biomaterials".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 5186

Special Issue Editor


E-Mail Website
Guest Editor
Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
Interests: oral medicine; dental materials; operative dentistry; oral health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of the Dental Biomaterials Section of JFB, I am excited to announce this new Special Issue, "Feature Papers in Dental Biomaterials 2nd Volume". This Special Issue aims to collect high-quality research articles, short communications, systematic reviews and invited narrative reviews on recent developments in the field of dental materials related, but not limited, to the properties of new materials including metals, alloys, polymers, ceramics, hybrid materials, functional and bioactive materials and any kinds of biomaterials used in dentistry. We welcome the submission of manuscripts from outstanding scholars.

We are looking forward to receiving your contributions.

Prof. Dr. Gianrico Spagnuolo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dentistry
  • biomaterials
  • nanomaterials
  • functional materials
  • advanced materials
  • polymers
  • composites
  • adhesives
  • ceramics
  • alloys
  • bioactive materials
  • resin-based materials
  • dental material surfaces
  • biofilms
  • regenerative dentistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2963 KiB  
Article
Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles
by Magdalena Sycińska-Dziarnowska, Magdalena Ziąbka, Katarzyna Cholewa-Kowalska, Gianrico Spagnuolo, Hyo-Sang Park, Steven J. Lindauer and Krzysztof Woźniak
J. Funct. Biomater. 2024, 15(12), 371; https://doi.org/10.3390/jfb15120371 - 9 Dec 2024
Viewed by 493
Abstract
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve [...] Read more.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated. The present study aimed to assess the microstructure of commercially available microimplants composed of a medical TiAlV (Ti6Al4V) alloy covered with organic–inorganic layers obtained by the sol–gel method using the dip-coating technique. The microstructures and elemental surface compositions of the sterile, etched, and layer-modified microimplants were characterized by scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM-EDS). Elements such as silver (Ag), calcium (Ca), phosphorus (P), silicon (Si), oxygen (O), and carbon (C) were detected on the microimplant’s surface layer. The SEM observations revealed that control microimplants (unetched) had smooth surfaces with only manufacturing-related embossing, while etching in hydrofluoric acid increased the surface roughness and introduced fluoride onto the microimplants. Layers with only silver nanoparticles reduced the roughness of the implant surface, and no extrusion was observed, while increased roughness and emerging porosity were observed when the layers were enriched with calcium and phosphorus. The highest roughness was observed in the microimplants etched with AgNPs and CaP, while the AgNPs-only layer showed a reduction in the roughness average parameter due to lower porosity. Enhancing the effectiveness of microimplants can be achieved by applying selective surface treatments to different parts. By keeping the outer tissue contact area smooth while making the bone contact area rough to promote stronger integration with bone tissue, the overall performance of the implants can be significantly improved. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

15 pages, 3495 KiB  
Article
Evaluation of the Effect of Chitosan-Based Irrigation Solutions on the Bond Strength of Mineral Trioxide Aggregate to Bulk-Fill Composite
by Arzu Şahin Mantı and Bağdagül Helvacıoğlu Kıvanç
J. Funct. Biomater. 2024, 15(12), 370; https://doi.org/10.3390/jfb15120370 - 8 Dec 2024
Viewed by 732
Abstract
(1) Background: Bond strength between repair and restorative materials is crucial for endodontic success. This study assessed the effects of the following final irrigation solutions on the bond strength of mineral trioxide aggregate (MTA) to a bulk-fill composite: (1) 17% Ethylenediamine tetraacetic acid [...] Read more.
(1) Background: Bond strength between repair and restorative materials is crucial for endodontic success. This study assessed the effects of the following final irrigation solutions on the bond strength of mineral trioxide aggregate (MTA) to a bulk-fill composite: (1) 17% Ethylenediamine tetraacetic acid (EDTA); (2) 2% Chlorhexidine (CHX); (3) 0.2% chitosan; (4) 0.2% chitosan with 2% CHX; 5) 0.2% chitosan with AgNPs. (2) Methods: Sixty MTA samples were divided into six groups (n = 10) based on the final irrigation solution: 1. EDTA, 2. CHX, 3. Chitosan, 4. Chitosan-CHX, 5. Chitosan-AgNP, and 6. distilled water (control). After a 5-min solution exposure, each sample was restored with the bulk-fill composite, and the shear bond strength (SBS) was measured. Structural changes in MTA were analyzed using SEM and EDS, and failure modes were classified as adhesive, cohesive, or mixed. Data were analyzed by one-way ANOVA with Tamhane’s T2 and Tukey’s tests (α = 0.05). (3) Results: EDTA exhibited the lowest SBS (p < 0.001), while Chitosan-CHX showed the highest. SEM showed a spongy, void-rich surface in EDTA-treated MTA, with significant Ca depletion per EDS. Chitosan-CHX showed no structural change. Cohesive fractures within MTA were predominant. (4) Conclusions: EDTA significantly reduces SBS, while chitosan with CHX enhances bond strength. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

13 pages, 1971 KiB  
Article
Temperature Changes (ΔT) in Correlation with Number of Implant Osteotomy Preparations in Human Cadaver Tibiae, Comparing Osseodensification (OD) Burs in Clockwise (CW) versus Counterclockwise (CCW) Mode
by Nikolaos Soldatos, Amanda Heydari, LeRoy Horton, Shayda Sarrami, Luke Nordlie, Dongseok Choi and Robin Weltman
J. Funct. Biomater. 2024, 15(8), 237; https://doi.org/10.3390/jfb15080237 - 22 Aug 2024
Viewed by 830
Abstract
(1) Background: OD burs are used in two different modes: (i) CW and (ii) CCW. The purpose of the study was to evaluate the ΔT during the preparation of implant osteotomies in a four-way interaction. (2) Methods: Three hundred and sixty osteotomies [...] Read more.
(1) Background: OD burs are used in two different modes: (i) CW and (ii) CCW. The purpose of the study was to evaluate the ΔT during the preparation of implant osteotomies in a four-way interaction. (2) Methods: Three hundred and sixty osteotomies were prepared at 12 mm depth in human cadaver tibiae. The ΔT values were calculated similarly to the method used in two previous studies carried out by our group. Four different variables were evaluated for their effect on ΔT. (3) Results: A four-way interaction was observed in the CCW mode, allowing for 1000 RPM to have the least effect in both modes. However, in the CCW mode the use of 3.0 and 4.0 burs after 23 osteotomies showed a statistically significant increase in ΔT, and significant chatter, compared to the CW mode. In the CCW mode, the ΔT was increased significantly as the diameter of the burs increased in 800 and 1200 RPM. (4) Conclusions: The synergistic effect of drills’ diameter, CCW mode, 800 and 1200 RPM, and bur usage (over 23 times) had a significant effect on ΔT, which exceeded 47 °C. One thousand (1000) RPM had the least effect in both modes. The 3.0 and 4.0 burs in the CCW mode drastically increased the temperature and produced significant chatter. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

14 pages, 1975 KiB  
Article
Oral Galvanism Side Effects: Comparing Alloy Ions and Galvanic Current Effects on the Mucosa-like Model
by Natalia Chepelova, Artem Antoshin, Sergei Voloshin, Anna Usanova, Yuri Efremov, Maria Makeeva, Stanislav Evlashin, Mikhail Stepanov, Anna Turkina and Peter Timashev
J. Funct. Biomater. 2023, 14(12), 564; https://doi.org/10.3390/jfb14120564 - 11 Dec 2023
Cited by 1 | Viewed by 2395
Abstract
The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects [...] Read more.
The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects of direct current and alloy corrosion ions are considered potentially contributing factors. Therefore, the aim of this study was to systemically compare the damaging effects of (1) galvanism as a synergistic process (direct current + corrosion ions), (2) direct current separately, and (3) corrosion ions separately on an in vitro mucosa-like model based on a cell line of immortalized human keratinocytes (HaCaTs) to reveal the factors playing a pivotal role in dental alloys side effects. For this, we chose and compared the dental alloys with the highest risk of oral galvanism: Ti64–AgPd and NiCr–AgPd. We showed that galvanic current may be the leading damaging factor in the cytotoxic processes associated with galvanic coupling of metallic intraoral appliances in the oral cavity, especially in the short-term period (28 days). However, the contribution of corrosion ions (Ni2+) to the synergistic toxicity was also shown, and quite possibly, in the long term, it could be no less dangerous. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

Back to TopTop