Feature Papers

A special issue of Machines (ISSN 2075-1702).

Deadline for manuscript submissions: closed (28 February 2015) | Viewed by 46153

Special Issue Editor


E-Mail Website
Guest Editor
Executive Office, University of the Arts London, 272 High Holborn, London WC1V 7EY, UK
Interests: condition monitoring; machine fault diagnosis; model based prognostics; machine performance prediction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We plan to publish a special issue on "feature papers" in order to give a broad overview of our area. We are looking for top quality papers which will be published free of charge in Open Access form. Authors will be editorial board members and researchers invited by the editorial office and the Editor-in-Chief. Papers could be both long research papers and papers describing the current state of the art in one of the areas covered by the journal.

Prof. Dr. David Mba
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • machine design
  • rotor dynamics
  • machine health monitoring
  • bearing design and dynamics
  • seal design
  • machine fault diagnosis
  • prognosis

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

5008 KiB  
Article
High-Efficiency Solar-Powered 3-D Printers for Sustainable Development
by Jephias Gwamuri, Dhiogo Franco, Khalid Y. Khan, Lucia Gauchia and Joshua M. Pearce
Machines 2016, 4(1), 3; https://doi.org/10.3390/machines4010003 - 15 Jan 2016
Cited by 29 | Viewed by 12973
Abstract
The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), [...] Read more.
The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV)-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1) PV charging battery and running 3-D printer; (2) printing under low insolation; (3) battery powering the 3-D printer alone; (4) PV charging the battery only; and (5) battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Figure 1

6243 KiB  
Article
Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency
by Olivier Barré and Bellemain Napame
Machines 2016, 4(1), 2; https://doi.org/10.3390/machines4010002 - 05 Jan 2016
Cited by 9 | Viewed by 22744
Abstract
In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is [...] Read more.
In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW). This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it appears that efficiency can be enhanced with suitable design methods. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Graphical abstract

521 KiB  
Article
Contactless Mechanical Components: Gears, Torque Limiters and Bearings
by Jose Luis Perez-Diaz, Efren Diez-Jimenez, Ignacio Valiente-Blanco, Cristian Cristache, Marco-Antonio Alvarez-Valenzuela and Juan Sanchez-Garcia-Casarrubios
Machines 2014, 2(4), 312-324; https://doi.org/10.3390/machines2040312 - 18 Dec 2014
Cited by 12 | Viewed by 9686
Abstract
Contactless mechanical components are mechanical sets for conversion of torque/speed, whose gears and moving parts do not touch each other, but rather they provide movement with magnets and magnetic materials that exert force from a certain distance. Magneto-mechanical transmission devices have several advantages [...] Read more.
Contactless mechanical components are mechanical sets for conversion of torque/speed, whose gears and moving parts do not touch each other, but rather they provide movement with magnets and magnetic materials that exert force from a certain distance. Magneto-mechanical transmission devices have several advantages over conventional mechanisms: no friction between rotatory elements (no power losses or heat generation by friction so increase of efficiency), no lubrication is needed (oil-free mechanisms and no lubrication auxiliary systems), reduced maintenance (no lubricant so no need of oil replacements), wider operational temperature ranges (no lubricant evaporation or freezing), overload protection (if overload occurs magnet simply slides but no teeth brake), through-wall connection (decoupling of thermal and electrical paths and environmental isolation), larger operative speeds (more efficient operative conditions), ultralow noise and vibrations (no contact no noise generation). All these advantages permit us to foresee in the long term several common industrial applications in which including contactless technology would mean a significant breakthrough for their performance. In this work, we present three configurations of contactless mechanical passive components: magnetic gears, magnetic torque limiters and superconducting magnetic bearings. We summarize the main characteristic and range of applications for each type; we show experimental results of the most recent developments showing their performance. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Figure 1

Back to TopTop