High-Value Compounds from Marine Algae

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Pharmacology".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 934

Special Issue Editor


E-Mail Website
Guest Editor
LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Interests: seaweeds; natural compounds; polyphenols; bioactive properties; bioavailability and metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

An estimated 5000–6000 marine macroalgae species are grown worldwide in various climatic conditions, representing a large reservoir of various high-value compounds, including polyphenols, terpenoids, alkaloids, steroids, pigments, polysaccharides, fatty acids, peptides, and many others, some of which cannot be found anywhere else in terrestrial plants. Many of these compounds have been associated with promising health benefits and have demonstrated a significant potential for application in foods, pharmaceuticals, nutraceuticals, cosmetics, and other industries.

Contributions to this Special Issue, both in the form of original research and review articles, may cover distinct aspects related to seaweed bioactive metabolites, including but not limited to their extraction and purification; structural characterization of new compounds; biological activities and mechanisms of action of extracts, purified fractions, isolated compounds, and/or of novel value-added products; structure–bioactivity relations; interaction with other substances in the formulated matrices; safety and stability of new value-added products; and technological innovation.

Dr. Marcelo D. Catarino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seaweeds
  • bioactive compounds
  • added-value products
  • (bio)technological innovation
  • marine resources

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2327 KiB  
Article
Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice
by Jieun Hwang, Mi-Bo Kim, Sanggil Lee and Jae-Kwan Hwang
Mar. Drugs 2024, 22(12), 557; https://doi.org/10.3390/md22120557 - 12 Dec 2024
Viewed by 689
Abstract
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal [...] Read more.
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week. Fucosterol significantly attenuated immobilization-induced muscle atrophy by enhancing muscle strength, with a concomitant increase in muscle volume, mass, and myofiber cross-sectional area in the tibialis anterior (TA) muscle in mice. In both the TNF-α-treated C2C12 myotubes and the TA muscle of immobilized mice, fucosterol significantly prevented muscle protein degradation, which was attributed to a reduction in atrogin-1 and muscle ring finger 1 gene expression through an increase in forkhead box O3α (FoxO3α) phosphorylation. Continuously, fucosterol stimulated muscle protein synthesis by increasing the phosphorylation of the mammalian target of the rapamycin (mTOR), 70 kDa ribosomal protein S6 kinase, and 4E binding protein 1, which was mediated through the stimulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Thus, fucosterol alleviated skeletal muscle atrophy in TNF-α-treated C2C12 myotubes and immobilized C57BL/6J mice through the regulation of the Akt/mTOR/FoxO3α signaling pathway. Full article
(This article belongs to the Special Issue High-Value Compounds from Marine Algae)
Show Figures

Graphical abstract

Back to TopTop