Marine Drug Research in Italy

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 5172

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 32-90123 Palermo, Italy
Interests: antibiotic resistance; anti-biofilm agents; anti-virulence compounds; anticancer derivatives; sortase A inhibitors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Italy is a European country with a long Mediterranean coastline, making it one of the most important countries for the development, exploitation and production of biologically and therapeutically active compounds from the marine environment.

At the same time, Italian scientists have significantly contributed to the discovery of new marine natural products (MNPs) with various bioactivities. In this Special Issue, we cordially invite Italian researchers to publish papers focused on the isolation and purification of marine compounds and their structural characterization, including the evaluation of their biological, pharmacological, nutraceutical and biotechnological properties.

Dr. Stella Maria Cascioferro
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • synthesis
  • structure elucidation
  • proteomics
  • glycomics
  • lipidomics
  • biotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 9124 KiB  
Article
Exploring the Antimicrobial Potential of Hallachrome, a Defensive Anthraquinone from the Marine Worm Halla parthenopeia (Polychaeta)
by Anita Ferri, Roberto Simonini, Carla Sabia and Ramona Iseppi
Mar. Drugs 2024, 22(9), 380; https://doi.org/10.3390/md22090380 - 24 Aug 2024
Viewed by 463
Abstract
Antimicrobial resistance is a critical global health issue, with rising resistance among bacteria and fungi. Marine organisms have emerged as promising, but underexplored, sources of new antimicrobial agents. Among them, marine polychaetes, such as Halla parthenopeia, which possess chemical defenses, could attract [...] Read more.
Antimicrobial resistance is a critical global health issue, with rising resistance among bacteria and fungi. Marine organisms have emerged as promising, but underexplored, sources of new antimicrobial agents. Among them, marine polychaetes, such as Halla parthenopeia, which possess chemical defenses, could attract significant research interest. This study explores the antimicrobial properties of hallachrome, a unique anthraquinone found in the purple mucus of H. parthenopeia, against Gram-negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027), Gram-positive bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228), and the most common human fungal pathogen Candida albicans ATCC 10231. Antibacterial susceptibility testing revealed that Gram-negative bacteria were not inhibited by hallachrome at concentrations ≤2 mM. However, Gram-positive bacteria showed significant growth inhibition at 0.12–0.25 mM, while C. albicans was inhibited at 0.06 mM. Time-kill studies demonstrated dose-dependent growth inhibition of susceptible strains by hallachrome, which exerted its effect by altering the membrane permeability of C. albicans, E. faecalis, and S. epidermidis after 6 h and S. aureus after 24 h. Additionally, hallachrome significantly reduced biofilm formation and mature biofilm in S. aureus, E. faecalis, and C. albicans. Additionally, it inhibited hyphal growth in C. albicans. These findings highlight hallachrome’s potential as a novel antimicrobial agent, deserving further exploration for clinical experimentation. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Graphical abstract

16 pages, 1491 KiB  
Article
Novel [1,3,4]Thiadiazole[3,2-a]pyrimidin-5-ones as Promising Biofilm Dispersal Agents against Relevant Gram-Positive and Gram-Negative Pathogens
by Daniela Carbone, Camilla Pecoraro, Fabio Scianò, Valentina Catania, Domenico Schillaci, Barbara Manachini, Stella Cascioferro, Patrizia Diana and Barbara Parrino
Mar. Drugs 2024, 22(3), 133; https://doi.org/10.3390/md22030133 - 15 Mar 2024
Cited by 1 | Viewed by 1515
Abstract
Biofilm-associated infections pose significant challenges in healthcare settings due to their resistance to conventional antimicrobial therapies. In the last decade, the marine environment has been a precious source of bioactive molecules, including numerous derivatives with antibiofilm activity. In this study, we reported the [...] Read more.
Biofilm-associated infections pose significant challenges in healthcare settings due to their resistance to conventional antimicrobial therapies. In the last decade, the marine environment has been a precious source of bioactive molecules, including numerous derivatives with antibiofilm activity. In this study, we reported the synthesis and the biological evaluation of a new series of twenty-two thiadiazopyrimidinone derivatives obtained by using a hybridization approach combining relevant chemical features of two important classes of marine compounds: nortopsentin analogues and Essramycin derivatives. The synthesized compounds were in vitro tested for their ability to inhibit biofilm formation and to disrupt mature biofilm in various bacterial strains. Among the tested compounds, derivative 8j exhibited remarkable dispersal activity against preformed biofilms of relevant Gram-positive and Gram-negative pathogens, as well as towards the fungus Candida albicans, showing BIC50 values ranging from 17 to 40 µg/mL. Furthermore, compound 8j was in vivo assayed for its toxicity and the anti-infective effect in a Galleria mellonella model. The results revealed a promising combination of anti-infective properties and a favorable toxicity profile for the treatment of severe chronic biofilm-mediated infections. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Graphical abstract

15 pages, 2178 KiB  
Article
Chemical and Pharmacological Prospection of the Ascidian Cystodytes dellechiajei
by Pedro Jatai Batista, Genoveffa Nuzzo, Carmela Gallo, Dalila Carbone, Mario dell’Isola, Mario Affuso, Giusi Barra, Federica Albiani, Fabio Crocetta, Riccardo Virgili, Valerio Mazzella, Daniela Castiglia, Giuliana d’Ippolito, Emiliano Manzo and Angelo Fontana
Mar. Drugs 2024, 22(2), 75; https://doi.org/10.3390/md22020075 - 31 Jan 2024
Cited by 1 | Viewed by 1933
Abstract
Marine invertebrates are a traditional source of natural products with relevant biological properties. Tunicates are soft-bodied, solitary or colonial, sessile organisms that provide compounds unique in their structure and activity. The aim of this work was to investigate the chemical composition of the [...] Read more.
Marine invertebrates are a traditional source of natural products with relevant biological properties. Tunicates are soft-bodied, solitary or colonial, sessile organisms that provide compounds unique in their structure and activity. The aim of this work was to investigate the chemical composition of the ascidian Cystodytes dellechiajei, selected on the basis of a positive result in biological screening for ligands of relevant receptors of the innate immune system, including TLR2, TLR4, dectin-1b, and TREM2. Bioassay-guided screening of this tunicate extract yielded two known pyridoacridine alkaloids, shermilamine B (1) and N-deacetylshermilamine B (2), and a family of methyl-branched cerebrosides (3). Compounds 2 and 3 showed selective binding to TREM2 in a dose-dependent manner. N-deacetylshermilamine B (2), together with its acetylated analogue, shermilamine B (1), was also strongly cytotoxic against multiple myeloma cell lines. TREM2 is involved in immunomodulatory processes and neurodegenerative diseases. N-deacetylshermilamine B (2) is the first example of a polycyclic alkaloid to show an affinity for this receptor. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Graphical abstract

Review

Jump to: Research

34 pages, 8232 KiB  
Review
Voltage-Gated K+ Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities
by Rita Turcio, Francesca Di Matteo, Ilaria Capolupo, Tania Ciaglia, Simona Musella, Carla Di Chio, Claudio Stagno, Pietro Campiglia, Alessia Bertamino and Carmine Ostacolo
Mar. Drugs 2024, 22(8), 350; https://doi.org/10.3390/md22080350 - 29 Jul 2024
Viewed by 789
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show [...] Read more.
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some “novel” candidate chemotherapeutic drugs that target potassium channels. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Figure 1

Back to TopTop