Future Prospects of Thin-Film Transistors and Their Applications, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 810

Special Issue Editor

College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518061, China
Interests: low-temperature thin-film transistors; reliability; display technology; sensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As we know, thin-film transistors (TFTs) are essential components in various electronic devices, such as displays, sensors, and memory devices, due to their high performance, low power consumption, and flexibility.

We will launch this Special Issue, entitled “Future Prospects of Thin Film Transistors and Their Applications”, to explore the latest advancements in TFTs and their potential applications. This issue would cover a wide range of topics related to TFTs, including TFT materials, TFT fabrication techniques, TFT device architectures, TFT characterization methods, TFT device reliability, and TFT-based applications in various fields. This Special Issue will highlight the importance of collaboration among researchers from different disciplines, including materials science, electrical engineering, and physics, to overcome the technical barriers and bring TFTs to real-world applications.

Overall, this Special Issue will provide a comprehensive overview of the current state-of-the-art in the field of TFTs and highlight the exciting opportunities and challenges in this rapidly evolving field. The papers presented in this Special Issue are expected to stimulate further research and innovation in the field of TFTs and pave the way for future electronic applications. You are more than welcome to submit high-quality reviews or original research papers.

Dr. Meng Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Thin-film transistor (TFT)
  • TFT-based applications
  • TFTs fabrication techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1777 KiB  
Article
Study of Vertical Phototransistors Based on Integration of Inorganic Transistors and Organic Photodiodes
by Jui-Fen Chang, Ying-You Lin and Yu-Ming Li
Micromachines 2024, 15(11), 1397; https://doi.org/10.3390/mi15111397 - 20 Nov 2024
Viewed by 604
Abstract
We investigate the inorganic/organic hybrid vertical phototransistor (VPT) by integrating an atomic layer deposition-processed ZnO (ALD-ZnO) transistor with a prototype poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend organic photodiode (OPD) based on an encapsulated source electrode geometry, and discuss the [...] Read more.
We investigate the inorganic/organic hybrid vertical phototransistor (VPT) by integrating an atomic layer deposition-processed ZnO (ALD-ZnO) transistor with a prototype poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) blend organic photodiode (OPD) based on an encapsulated source electrode geometry, and discuss the device mechanism. Our preliminary studies on reference P3HT:PC61BM OPDs show non-ohmic electron injection between the ALD-ZnO and P3HT:PC61BM layers. However, the ALD-ZnO layer enables the accumulation of photogenerated holes under negative bias, which facilitates electron injection upon illumination and thereby enhances the external quantum efficiency (EQE). This mechanism underpins the photoresponse in the VPT. Furthermore, we demonstrate that the gate field in the VPT effectively modulates electron injection from the ALD-ZnO layer to the top OPD, resulting in the VPT operating as a non-ohmic OPD in the OFF state and as an ohmic OPD in the ON state. Benefiting from the unique transistor geometry and gate modulation capability, this hybrid VPT can achieve an EQE of 45,917%, a responsivity of 197 A/W, and a specific detectivity of 3.4 × 1012 Jones under 532 nm illumination and low drain-source voltage (Vds = 3 V) conditions. This transistor geometry also facilitates integration with various OPDs and the miniaturization of the ZnO channel area, offering an ideal basis for the development of highly efficient VPTs and high-resolution image sensors. Full article
Show Figures

Figure 1

Back to TopTop