molecules-logo

Journal Browser

Journal Browser

Theoretical Study of Inorganic Complexes: Recent Advances and Future Perspectives

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 688

Special Issue Editor


E-Mail Website
Guest Editor
School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Interests: inorganic complexes; catalysis; adsorption separation; ab initio calculation; molecular dynamics

Special Issue Information

Dear Colleagues,

Inorganic complexes possess great structure diversity and unique properties. As such, their design and synthesis, as well as their functional properties and applications, have become hot spots of research in the fields of coordination chemistry, crystal engineering, and material science. Inorganic complexes have shown broad application prospects in adsorption and separation, catalysis, photo- and electroluminescence, nonlinear optics, magnetism, sensing and detection, and energy, among other fields. This Special Issue aims to collect recent advances and trends in theoretical and experimental research on inorganic complexes. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Design and synthesis of complexes;
  • Structural and spectroscopic characteristics;
  • Theoretical description of materials;
  • Optical, electrical, and magnetic properties;
  • Catalysis, including photo- and electrocatalysis;
  • Energy conversion and storage materials.

I look forward to receiving your contributions.

Dr. Zhaoxu Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inorganic complexes
  • synthesis and reactivity
  • structure and property prediction
  • structure design
  • magnetism
  • catalysis and energy transformation
  • adsorption and separation
  • crystal structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5810 KiB  
Article
Complexes of Hydrogen Peroxide, the Simplest Chiral Molecule, with L- and D-Serine Enantiomers and Their Clusters: MP2 and DFT Calculations
by Yurii A. Borisov, Sergey S. Kiselev, Mikhail I. Budnik and Lubov V. Snegur
Molecules 2024, 29(16), 3955; https://doi.org/10.3390/molecules29163955 - 21 Aug 2024
Viewed by 482
Abstract
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it [...] Read more.
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it is crucial to investigate the formation of complexes between them, considering the role of molecular chirality. In this work, we report a theoretical study on the hydrogen peroxide enantiomers and their interactions with L- and S-serine and their clusters. We aimed to evaluate the non-covalent interactions between each hydrogen peroxide enantiomer and the L- and D-enantiomers of the non-essential amino acid serine and their clusters. First, the potential energy surfaces (PES) of transitions between enantiomers of the simplest chiral molecule, hydrogen peroxide, in the gas phase and in aqueous solution were studied using the Møller–Plesset theory method MP2/aug-cc-pVDZ. The activation energies of such transitions were calculated. The interactions of both hydrogen peroxide enantiomers (P and M) with L- and D-serine enantiomers were analyzed by density functional theory (DFT) with ωb97xd/6-311+G**, B3Lyp/6-311+G**, B3P86/6-311+G**, and M06/6-311+G** functionals. We found that both enantiomers of hydrogen peroxide bind more strongly to L-serine and its clusters than to D-serine, especially highlighting that the L form is the predominant natural form of this and other chiral amino acids. The optimized geometric parameters, interaction energies, and HOMO-LUMO energies for various complexes were estimated. Furthermore, circular dichroism (CD) spectra, which are optical chirality characteristics, were simulated for all the complexes under study. Full article
Show Figures

Figure 1

Back to TopTop