Nanoelectronics: Materials, Devices and Applications (Second Edition)

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 2274

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Dielectric Functional Materials, School of Materials Science & Engineering, Anhui University, Hefei 230601, China
Interests: dielectrics; ferroelectrics; physics; materials and their applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanoelectronics refers to the electronics field of device preparation, research and application based on nanoscale materials. Due to quantum size effect, the electrons in nanomaterials and devices exhibit many novel characteristics, attracting significant attention from researchers in various fields. It is widely believed that nanoelectronics will replace microelectronics as the main body of information technology in the coming decades, which will create a profound impact on human life.

This Special Issue on “Nanoelectronics: Materials, Devices and Applications” aims to collect the most recent developments in functional nanomaterials and their applications in different fields, including—but not limited to—their applications in mechanics, electricity, magnetism, optics, catalysis, sensors, information, energy harvesting and conversion, etc. Papers detailing a fundamental understanding of the properties of the above field, as demonstrated by nanoscale materials, are also welcome.

Prof. Dr. Chunchang Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • design, synthesis and fabrication of nanoelectronic materials
  • new theory and modeling of nanoelectronic materials
  • electronic, optical, magnetic and other properties of nanoelectronic materials
  • applications of nanoelectronic materials
  • nanoelectronic devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 5838 KiB  
Article
The Influence of Etching Method on the Occurrence of Defect Levels in III-V and II-VI Materials
by Kinga Majkowycz, Krzysztof Murawski, Małgorzata Kopytko, Krzesimir Nowakowski-Szkudlarek, Marta Witkowska-Baran and Piotr Martyniuk
Nanomaterials 2024, 14(19), 1612; https://doi.org/10.3390/nano14191612 - 9 Oct 2024
Viewed by 529
Abstract
The influence of the etching method on the occurrence of defect levels in InAs/InAsSb type-II superlattice (T2SLs) and MCT photodiode is presented. For both analyzed detectors, the etching process was performed by two methods: wet chemical etching and dry etching using an ion [...] Read more.
The influence of the etching method on the occurrence of defect levels in InAs/InAsSb type-II superlattice (T2SLs) and MCT photodiode is presented. For both analyzed detectors, the etching process was performed by two methods: wet chemical etching and dry etching using an ion beam (RIE—reactive ion etching). The deep-level transient spectroscopy (DLTS) method was used to determine the defect levels occurring in the analyzed structures. The obtained results indicate that the choice of etching method affects the occurrence of additional defect levels in the MCT material, but it has no significance for InAs/InAsSb T2SLs. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

11 pages, 1606 KiB  
Article
Josephson Diode Effect in Parallel-Coupled Double-Quantum Dots Connected to Unalike Majorana Nanowires
by Yu-Mei Gao, Hu Xiao, Mou-Hua Jiang, Feng Chi, Zi-Chuan Yi and Li-Ming Liu
Nanomaterials 2024, 14(15), 1251; https://doi.org/10.3390/nano14151251 - 25 Jul 2024
Cited by 1 | Viewed by 836
Abstract
We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin–orbit interaction, and [...] Read more.
We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin–orbit interaction, and the Zeeman splitting inside the nanowires, a pair of Majorana bound states (MBSs) may possibly emerge at opposite ends of each nanowire. Different phase factors arising from the superconductor substrate can be generated in the coupling amplitudes between the DQDs and MBSs prepared at the left and right nanowires, and this will result in the Josephson current. We find that the critical Josephson currents in positive and negative directions are different from each other in amplitude within an oscillation period with respect to the magnetic flux penetrating through the system, a phenomenon known as the JDE. It arises from the quantum interference effect in this double-path device, and it can hardly occur in the system of one QD coupled to MBSs. Our results also show that the diode efficiency can reach up to 50%, but this depends on the overlap amplitude between the MBSs, as well as the energy levels of the DQDs adjustable by gate voltages. The present model is realizable within current nanofabrication technologies and may find practical use in the interdisciplinary field of Majorana and Josephson physics. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

19 pages, 9067 KiB  
Article
Infrared Lightwave Memory-Resident Manipulation and Absorption Based on Spatial Electromagnetic Wavefield Excitation and Resonant Accumulation by GdFe-Based Nanocavity-Shaped Metasurfaces
by Cheng Chen, Chuang Zhang, Taige Liu, Zhe Wang, Jiashuo Shi and Xinyu Zhang
Nanomaterials 2024, 14(14), 1230; https://doi.org/10.3390/nano14141230 - 20 Jul 2024
Viewed by 556
Abstract
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable [...] Read more.
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable IR radiation absorption according to the spatial magnetic plasmon modes is realized experimentally. The simulations and measurements demonstrate that GdFe-based nanocavity-shaped metasurfaces can be used to achieve an average IR absorption of ~81% in a wide wavelength range of 3–14 μm. A type of the patterned GdFe-based nanocavity-shaped metasurface is further proposed for exciting relatively strong spatial electromagnetic wavefields confined by a patterned nanocavity array based on the joint action of the surface oscillated net charges over the charged metallic films and the surface conductive currents including equivalent eddy currents surrounding the layered GdFe and SiO2 materials. Intensive IR absorption can be attributed to a spatial electromagnetic wavefield excitation and resonant accumulation or memory residence according to the GdFe-based nanocavity-shaped array formed. Our research provides a potential clue for efficiently responding and manipulating and storing incident IR radiation mainly based on the excitation and resonant accumulation of spatial magnetic plasmons. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

Back to TopTop