Nanoscale Materials and Their Photonic Devices

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: closed (20 June 2024) | Viewed by 1742

Special Issue Editor


E-Mail Website
Guest Editor
Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China
Interests: lanthanide-doped nanomaterials; spectral management; on-chip devices; microcavity; nanophotonics

Special Issue Information

Dear Colleagues,

Nanomaterials and their functional devices are generally regarded as a promising alternative for the next generation of photonic chips. Undoubtedly, the unique advantages of photons, including a large width, high computing speed, ultrahigh parallelism, and low power consumption, provide new opportunities to overcome the performance limitation of certain traditional electronic devices. Recently, the emerging nanostructures and nanotechnology have boosted the development of functional modules in all-optical processing chips, such as emitters, detectors, modulators, waveguides, and switches. The key advances lie in the design of the electronic states and the optical states, which leads to the significant improvement in the functionality and performance of photonic devices.

This Special Issue will present both scientific and engineering aspects of nanomaterials and their practical applications in the fields of optical communication, high-level security, on-chip recording, high-throughput sensing, etc. This includes the design and controlled synthesis of nanoarchitectures, fundamental properties, spectral management, and achievement of state-of-the-art photonic devices. We invite authors to contribute original research articles and review articles covering the current progress on nanoscale materials and their photonic devices.

Dr. Limin Jin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • nanophotonics
  • optical devices
  • spectral management
  • controlled synthesis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 8570 KiB  
Article
Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons
by Huying Zheng, Runchen Wang, Xuebing Gong, Junxing Dong, Lisheng Wang, Jingzhuo Wang, Yifan Zhang, Yan Shen, Huanjun Chen, Baijun Zhang and Hai Zhu
Nanomaterials 2024, 14(14), 1197; https://doi.org/10.3390/nano14141197 - 14 Jul 2024
Viewed by 1350
Abstract
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton [...] Read more.
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton condensates, enabling polariton lasing with specific formation in k-space. Here, we realize quantized microcavity polariton lasing in simple harmonic oscillator (SHO) states based on spatial localized excitons in InGaN/GaN quantum wells (QWs). Benefiting from the high exciton binding energy (90 meV) and large oscillator strength of the localized exciton, room-temperature (RT) polaritons with large Rabi splitting (61 meV) are obtained in a strongly coupled microcavity. The manipulation of polariton condensates is performed through a parabolic potential well created by optical pump control. Under the confinement situation, trapped polaritons are controlled to be distributed in the selected quantized energy sublevels of the SHO state. The maximum energy spacing of 11.3 meV is observed in the SHO sublevels, indicating the robust polariton trapping of the parabolic potential well. Coherent quantized polariton lasing is achieved in the ground state of the SHO state and the coherence property of the lasing is analyzed through the measurements of spatial interference patterns and g(2)(τ). Our results offer a feasible route to explore the manipulation of macroscopic quantum coherent states and to fabricate novel polariton devices towards room-temperature operations. Full article
(This article belongs to the Special Issue Nanoscale Materials and Their Photonic Devices)
Show Figures

Figure 1

Back to TopTop