Swine Viral Diseases

A special issue of Pathogens (ISSN 2076-0817). This special issue belongs to the section "Viral Pathogens".

Deadline for manuscript submissions: closed (31 March 2023) | Viewed by 33518

Special Issue Editor


E-Mail Website
Guest Editor
Department of Diagnosis and Clinical Sciences, Faculty of Biological and Veteterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Interests: veterinary virology; epidemiology; poultry and swine viruses
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Taking into account the importance of pig and poultry production in numerous countries of Europe, this Special Issue of Pathogens will discuss the most important topics related to poultry and swine viral diseases, including the aspects of epidemiology, diagnostics, prevention, and control. Therefore, I would like cordially to invite you to submit your relevant papers to this Special Issue of our journal. Your valuable input will enrich the current state of knowledge and practical approaches to epidemiology, diagnosis, and a better understanding of pig and poultry viral diseases. 

Prof. Dr. Grzegorz Wozniakowski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Epidemiology
  • diagnostics
  • swine viral diseases
  • pig and poultry viral diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

15 pages, 4753 KiB  
Article
Bis-Benzylisoquinoline Alkaloids Inhibit Porcine Epidemic Diarrhea Virus by Disrupting Virus Entry
by Caisheng Zhang, Huan Chen, Liumei Sun, Pu Zhao, Chuanxiang Qi, Ying Yang, Anqi Si, Yingjuan Qian and Yong-Sam Jung
Pathogens 2023, 12(6), 845; https://doi.org/10.3390/pathogens12060845 - 19 Jun 2023
Cited by 4 | Viewed by 1813
Abstract
The porcine epidemic diarrhea virus (PEDV), belonging to the α-coronavirus, is the causative agent of porcine epidemic diarrhea (PED). Presently, protection from the existing PEDV vaccine is not effective. Therefore, anti-PEDV compounds should be studied. Berbamine (BBM), Fangchinoline (FAN), and (+)-Fangchinoline (+FAN), are [...] Read more.
The porcine epidemic diarrhea virus (PEDV), belonging to the α-coronavirus, is the causative agent of porcine epidemic diarrhea (PED). Presently, protection from the existing PEDV vaccine is not effective. Therefore, anti-PEDV compounds should be studied. Berbamine (BBM), Fangchinoline (FAN), and (+)-Fangchinoline (+FAN), are types of bis-benzylisoquinoline alkaloids that are extracted from natural medicinal plants. These bis-benzylisoquinoline alkaloids have various biological activities, including antiviral, anticancer, and anti-inflammatory properties. In this study, we found that BBM, FAN, and +FAN suppressed PEDV activity with a 50% inhibitory concentration of 9.00 µM, 3.54 µM, and 4.68 µM, respectively. Furthermore, these alkaloids can decrease the PEDV-N protein levels and virus titers in vitro. The time-of-addition assay results showed that these alkaloids mainly inhibit PEDV entry. We also found that the inhibitory effects of BBM, FAN, and +FAN on PEDV rely on decreasing the activity of Cathepsin L (CTSL) and Cathepsin B (CTSB) by suppressing lysosome acidification. Taken together, these results indicated that BBM, FAN, and +FAN were effective anti-PEDV natural products that prevented PEDV entry and may be considered novel antiviral drugs. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

11 pages, 1872 KiB  
Communication
Detection and Complete Genomic Analysis of Porcine circovirus 3 (PCV3) in Diarrheic Pigs from the Dominican Republic: First Report on PCV3 from the Caribbean Region
by Kerry Gainor, Yussaira Castillo Fortuna, Angeline Steny Alakkaparambil, Wendy González, Yashpal Singh Malik and Souvik Ghosh
Pathogens 2023, 12(2), 250; https://doi.org/10.3390/pathogens12020250 - 4 Feb 2023
Cited by 1 | Viewed by 2159
Abstract
The increasing detection of Porcine circovirus 3 (PCV3, family Circoviridae) in clinically ill pigs worldwide has raised concerns on the implications of the virus on porcine health and the pork industry. Although pork production constitutes an important component of the livestock economy [...] Read more.
The increasing detection of Porcine circovirus 3 (PCV3, family Circoviridae) in clinically ill pigs worldwide has raised concerns on the implications of the virus on porcine health and the pork industry. Although pork production constitutes an important component of the livestock economy and is a major source of animal protein in the Caribbean Islands, there are no reports on PCV3 in pigs from the region so far. In the present study, PCV3 was detected in 21% (21/100) of diarrheic pigs (sampled at three farms) from the Caribbean nation of the Dominican Republic (DR). Although the sample size varied between porcine age groups, the highest PCV3 detection rates (35.3% each, respectively) were observed in piglets and growers. Co-infections with PCV2 and porcine adenovirus were observed in 38.09% and 9.52% of the PCV3 positive samples, respectively. The complete genomes of 11 DR PCV3 strains were analyzed in the present study, revealing a unique deletion (corresponding to nucleotide residue at position 1165 of reference PCV3 sequences) in one of the DR PCV3 sequences. Based on sequence identities and phylogenetic analysis (open reading frame 2 and complete genome sequences), the DR PCV3 strains were assigned to genotype PCV3a, and shared high sequence homologies (>98% identities) between themselves and with those of other PCV3a (Clade-1) strains, corroborating previous observations on the genetic stability of PCV3 worldwide. To our knowledge, this is the first report on the detection and molecular characterization of PCV3 in pigs from the Caribbean region, providing important insights into the expanding global distribution of the virus, even in isolated geographical regions (the Island of Hispaniola). Our findings warrant further investigations on the molecular epidemiology and economic implications of PCV3 in pigs with diarrhea and other clinical conditions across the Caribbean region. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

11 pages, 1142 KiB  
Article
Assessing the Epidemiology of Rotavirus A, B, C and H in Diarrheic Pigs of Different Ages in Northern Italy
by Elena Ferrari, Cristian Salogni, Vito Martella, Giovanni Loris Alborali, Alessandra Scaburri and Maria Beatrice Boniotti
Pathogens 2022, 11(4), 467; https://doi.org/10.3390/pathogens11040467 - 14 Apr 2022
Cited by 8 | Viewed by 2412
Abstract
Rotaviruses are classified in 10 groups (A to J), where rotavirus A (RVA) is the major cause of diarrhea in humans and animals. With some exceptions, there is scarce information on the epidemiology of non-A rotaviruses in human and animal hosts. Currently, five [...] Read more.
Rotaviruses are classified in 10 groups (A to J), where rotavirus A (RVA) is the major cause of diarrhea in humans and animals. With some exceptions, there is scarce information on the epidemiology of non-A rotaviruses in human and animal hosts. Currently, five species (A, B, C, E and H) have been identified in pigs. In the present study we investigated the prevalence of RVA, RVB, RVC and RVH among diarrheic pigs of different ages, in different seasons and in the presence of co-infections. Two molecular assays were developed for the detection of porcine RVA, RVB, RVC and RVH and were used to screen 962 stool specimens from suckling, weaning and fattening pigs with acute enteritis. Overall, rotaviruses were detected in a high percentage of samples (78%), with RVA being predominant (53%), followed by RVC (45%), RVB (43%) and RVH (14%). RVA was more common in the suckling (58%) and weaning cohorts (64%), while RVB, RVC and RVH were also frequently detected in fattening pigs. Only RVA and RVB infections followed a seasonal trend and exhibited age-related differences. Rotavirus infections were frequently present in combination with other pathogens. The present study depicts a portrait of rich rotavirus diversity in porcine herds, identifying seasonal and age-related patterns of circulation of the different rotavirus species in the surveyed areas. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

14 pages, 1461 KiB  
Article
Molecular Detection and Genetic Characterization of Potential Zoonotic Swine Enteric Viruses in Northern China
by Gebremeskel Mamu Werid, Yassein M. Ibrahim, Hongyan Chen, Lizhi Fu and Yue Wang
Pathogens 2022, 11(4), 417; https://doi.org/10.3390/pathogens11040417 - 30 Mar 2022
Cited by 7 | Viewed by 2360
Abstract
Despite significant economic and public health implications, swine enteric viruses that do not manifest clinical symptoms are often overlooked, and data on their epidemiology and pathogenesis are still scarce. Here, an epidemiological study was carried out by using reverse transcription-polymerase chain reaction (RT-PCR) [...] Read more.
Despite significant economic and public health implications, swine enteric viruses that do not manifest clinical symptoms are often overlooked, and data on their epidemiology and pathogenesis are still scarce. Here, an epidemiological study was carried out by using reverse transcription-polymerase chain reaction (RT-PCR) and sequence analysis in order to better understand the distribution and genetic diversity of porcine astrovirus (PAstV), porcine encephalomyocarditis virus (EMCV), porcine kobuvirus (PKV), and porcine sapovirus (PSaV) in healthy pigs reared under specific pathogen-free (SPF) or conventional farms. PKV was the most prevalent virus (51.1%, 247/483), followed by PAstV (35.4%, 171/483), then PSaV (18.4%, 89/483), and EMCV (8.7%, 42/483). Overall, at least one viral agent was detected in 300 out of 483 samples. Out of the 300 samples, 54.0% (162/300), 13.0% (39/300), or 1.0% (3/300) were found coinfected by two, three, or four viruses, respectively. To our knowledge, this is the first report of EMCV detection from porcine fecal samples in China. Phylogenetic analysis revealed genetically diverse strains of PAstV, PKV, and PSaV circulating in conventional and SPF farms. Detection of swine enteric viruses with a high coinfection rate in healthy pigs highlights the importance of continuous viral surveillance to minimize future economic and public health risks. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

7 pages, 623 KiB  
Communication
European and American Strains of Porcine Parainfluenza Virus 1 (PPIV-1) Belong to Two Distinct Genetic Lineages
by Tomasz Stadejek, Piotr Cybulski, Phillip C. Gauger and Aleksandra Woźniak
Pathogens 2022, 11(3), 375; https://doi.org/10.3390/pathogens11030375 - 20 Mar 2022
Cited by 8 | Viewed by 2285
Abstract
Porcine parainfluenza virus 1 (PPIV-1) is a recently emerged respirovirus closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SenV). PPIV-1 has been detected in Asia, the Americas and Europe, but knowledge on its epidemiology and genetic diversity is very limited. [...] Read more.
Porcine parainfluenza virus 1 (PPIV-1) is a recently emerged respirovirus closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SenV). PPIV-1 has been detected in Asia, the Americas and Europe, but knowledge on its epidemiology and genetic diversity is very limited. In the present study, the complete nucleotide sequences of the fusion (F)-protein gene obtained from samples from 12 Polish and 11 US herds were analysed and compared to previously available genetic data from the Americas, Asia and Europe. The existence of two distinct clades was observed, grouping European sequences and one Hong Kong sequence (clade 1), or one American sequence and three Asian sequences (clade 2). The mean genetic distances measured with the p-distance were 0.04 (S.E., 0.000) within both clades, and 0.095 (S.E., 0.006) between the clades. Moreover, two distinct clusters of highly similar sequences were identified, which corresponded to the geographically distant nurseries and finishing units, from three pig flows within one Polish pig-production company. The obtained data indicate that the two PPIV-1 lineages may have evolved independently in Europe and America. More studies, particularly involving Asian viruses, are necessary to understand the virus’ emergence and epidemiology and the role of carriers in the spread of PPIV-1. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

11 pages, 1794 KiB  
Communication
First Detection of NADC34-like PRRSV as a Main Epidemic Strain on a Large Farm in China
by Chao Li, Bangjun Gong, Qi Sun, Hu Xu, Jing Zhao, Lirun Xiang, Yan-Dong Tang, Chaoliang Leng, Wansheng Li, Zhenyang Guo, Jun Fu, Jinmei Peng, Qian Wang, Guohui Zhou, Ying Yu, Fandan Meng, Tongqing An, Xuehui Cai, Zhi-Jun Tian and Hongliang Zhang
Pathogens 2022, 11(1), 32; https://doi.org/10.3390/pathogens11010032 - 29 Dec 2021
Cited by 12 | Viewed by 3235
Abstract
The newly emerged sublineage 1.5 (NADC34-like) porcine reproductive and respiratory syndrome virus (PRRSV) has posed a direct threat to the Chinese pig industry since 2018. However, the prevalence and impact of NADC34-like PRRSV on Chinese pig farms is unclear. In the present study, [...] Read more.
The newly emerged sublineage 1.5 (NADC34-like) porcine reproductive and respiratory syndrome virus (PRRSV) has posed a direct threat to the Chinese pig industry since 2018. However, the prevalence and impact of NADC34-like PRRSV on Chinese pig farms is unclear. In the present study, we continuously monitored pathogens—including PRRSV, African swine fever virus (ASFV), classical swine fever virus (CSFV), pseudorabies virus (PRV), and porcine circovirus 2 (PCV2)—on a fattening pig farm with strict biosecurity practices located in Heilongjiang Province, China, from 2020 to 2021. The results showed that multiple types of PRRSV coexisted on a single pig farm. NADC30-like and NADC34-like PRRSVs were the predominant strains on this pig farm. Importantly, NADC34-like PRRSV—detected during the period of peak mortality—was one of the predominant strains on this pig farm. Sequence alignment suggested that these strains shared the same 100 aa deletion in the NSP2 protein as IA/2014/NADC34 isolated from the United States (U.S.) in 2014. Phylogenetic analysis based on open reading frame 5 (ORF5) showed that the genetic diversity of NADC34-like PRRSV on this farm was relatively singular, but it had a relatively high rate of evolution. Restriction fragment length polymorphism (RFLP) pattern analysis showed that almost all ORF5 RFLPs were 1-7-4, with one 1-4-4. In addition, two complete genomes of NADC34-like PRRSVs were sequenced. Recombination analysis and sequence alignment demonstrated that both viruses, with 98.9% nucleotide similarity, were non-recombinant viruses. This study reports the prevalence and characteristics of NADC34-like PRRSVs on a large-scale breeding farm in northern China for the first time. These results will help to reveal the impact of NADC34-like PRRSVs on Chinese pig farms, and provide a reference for the detection and further prevention and control of NADC34-like PRRSVs. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

20 pages, 58285 KiB  
Article
Improving Current Knowledge on Seroprevalence and Genetic Characterization of Swine Influenza Virus in Croatian Pig Farms: A Retrospective Study
by Andreja Jungić, Vladimir Savić, Josip Madić, Ljubo Barbić, Besi Roić, Dragan Brnić, Jelena Prpić, Lorena Jemeršić and Dinko Novosel
Pathogens 2021, 10(11), 1527; https://doi.org/10.3390/pathogens10111527 - 22 Nov 2021
Cited by 1 | Viewed by 2550
Abstract
In a total of 1536 blood serum samples analysed by ELISA, antibodies for IAV nucleoprotein (NP) were detected in 30.3%. Results from HI show that the most common subtype of swIAV in the Croatian pig population was H1N1 (44.6%), followed by H3N2 (42.7%) [...] Read more.
In a total of 1536 blood serum samples analysed by ELISA, antibodies for IAV nucleoprotein (NP) were detected in 30.3%. Results from HI show that the most common subtype of swIAV in the Croatian pig population was H1N1 (44.6%), followed by H3N2 (42.7%) and H1N2 (26.3%). Antibodies to at least one subtype were detected in 62.19% of blood serum samples. Detection of swIAV antigen was performed by IHC and detected in 8 of 28 lung samples collected post-mortem. The matrix (M) gene was detected in nine of one hundred and forty-two lung tissue samples and in seven of twenty-nine nasopharyngeal swabs. Phylogenetic analysis of amplified HA and NA gene fragments in Croatian isolates suggests the presence of swIAV H1avN1av. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

12 pages, 1562 KiB  
Article
Virucidal Activity of Plant Extracts against African Swine Fever Virus
by Małgorzata Juszkiewicz, Marek Walczak, Grzegorz Woźniakowski and Anna Szczotka-Bochniarz
Pathogens 2021, 10(11), 1357; https://doi.org/10.3390/pathogens10111357 - 20 Oct 2021
Cited by 5 | Viewed by 3240
Abstract
African swine fever is one of the most dangerous and fatal swine diseases, described for the first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine nor treatment available. The only way to hinder further spread of [...] Read more.
African swine fever is one of the most dangerous and fatal swine diseases, described for the first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine nor treatment available. The only way to hinder further spread of the disease is by culling the affected herds and applying prevention based mainly on proper biosecurity. Due to growing awareness of the potential ASF threat among pig producers, disinfection processes are considered as one of the most important preventive measures. Currently, a variety of chemical compounds are applied for the disinfection of pig farms. Meanwhile, these chemicals may pose a potential risk, due to their toxic, irritant or corrosive effect. The aim of this study was to determine whether any plant-based natural compounds may show a virucidal effect against ASFV, and simultaneously be depleted of some of the side-effects typical for chemical compounds. Ideally, natural virucidal compounds should be safe for both humans and animals, biodegradable, easily available and inexpensive. Fourteen plant extracts were selected and screened for their virucidal effect against ASFV, using the suspension test inspired by the PN-EN 14675:2015 European Standard procedure. The results of our study showed that most of the tested plant extracts were ineffective against ASFV. Some extracts suspended in a hydroglycolic medium exhibited high virus titre reduction, but it was confirmed that the effect resulted from medium composition. However, a 1.05% peppermint extract showed high effectiveness against ASFV, reducing the virus titre by ≥4 log10, thus demonstrating that natural compounds used as virucidal agents could potentially be used in disinfection procedures, being both effective and harmless to humans and animals. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

15 pages, 1688 KiB  
Article
African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives
by Maciej Piotr Frant, Anna Gal-Cisoń, Łukasz Bocian, Anna Ziętek-Barszcz, Krzysztof Niemczuk, Grzegorz Woźniakowski and Anna Szczotka-Bochniarz
Pathogens 2021, 10(9), 1219; https://doi.org/10.3390/pathogens10091219 - 19 Sep 2021
Cited by 13 | Viewed by 3434
Abstract
African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, [...] Read more.
African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, Vietnam, and South Korea). The national ASF eradication and prevention program includes continuous passive (wild boar found dead and road-killed wild boar) and active (hunted wild boar) surveillance. The main goal of this study was to analyze the dynamic of the spread of ASF in the wild boar population across the territory of Poland in 2020. In that year in Poland, in total 6191 ASF-positive wild boar were declared. Most of them were confirmed in a group of animals found dead. The conducted statistical analysis indicates that the highest chance of obtaining an ASF-positive result in wild boar was during the winter months, from January to March, and in December 2020. Despite the biosecurity measures implemented by holdings of domestic pigs, the disease also occurred in 109 pig farms. The role of ASF surveillance in the wild boar population is crucial to apply more effective and tailored measures of disease control and eradication. The most essential measures to maintain sustainable production of domestic pigs in Poland include effective management of the wild boar population, along with strict implementation of biosecurity measures by domestic pig producers. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

Review

Jump to: Research, Other

24 pages, 994 KiB  
Review
Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus
by Monika Olech
Pathogens 2022, 11(10), 1074; https://doi.org/10.3390/pathogens11101074 - 21 Sep 2022
Cited by 10 | Viewed by 3101
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and [...] Read more.
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

13 pages, 696 KiB  
Review
The Complexity of Swine Caliciviruses. A Mini Review on Genomic Diversity, Infection Diagnostics, World Prevalence and Pathogenicity
by Irit Davidson, Efthymia Stamelou, Ioannis A. Giantsis, Konstantinos V. Papageorgiou, Evanthia Petridou and Spyridon K. Kritas
Pathogens 2022, 11(4), 413; https://doi.org/10.3390/pathogens11040413 - 29 Mar 2022
Cited by 1 | Viewed by 2416
Abstract
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of [...] Read more.
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of viruses that are the proven or suspected etiological agents of gastroenteritis, the pathogenicity of the members of Caliciviridae family is among the less well understood. In this context, the present review presents and discusses the current knowledge of two genera belonging to this family, namely the Norovirus and the Sapovirus, in relation to swine. Aspects such as pathogenicity, clinical evidence, symptoms, epidemiology and worldwide prevalence, genomic diversity, identification tools as well as interchanging hosts are not only reviewed but also critically evaluated. Generally, although often asymptomatic in pigs, the prevalence of those microbes in pig farms exhibits a worldwide substantial increasing trend. It should be mentioned, however, that the factors influencing the symptomatology of these viruses are still far from well established. Interestingly, both these viruses are also characterized by high genetic diversity. These high levels of molecular diversity in Caliciviridae family are more likely a result of recombination rather than evolutionary or selective adaptation via mutational steps. Thus, molecular markers for their detection are mostly based on conserved regions such as the RdRp region. Finally, it should be emphasized that Norovirus and the Sapovirus may also infect other domestic, farm and wild animals, including humans, and therefore their surveillance and clarification role in diseases such as diarrhea is a matter of public health importance as well. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

Other

Jump to: Research, Review

14 pages, 3356 KiB  
Brief Report
Ten Years of African Swine Fever in Ukraine: An Endemic Form of the Disease in the Wild Boar Population as a Threat to Domestic Pig Production
by Hanna Omelchenko, Natalia O. Avramenko, Maksym O. Petrenko, Jarosław Wojciechowski, Zygmunt Pejsak and Grzegorz Woźniakowski
Pathogens 2022, 11(12), 1459; https://doi.org/10.3390/pathogens11121459 - 2 Dec 2022
Cited by 3 | Viewed by 2501
Abstract
(1) Background: African swine fever (ASF) has been present in Ukraine for more than ten years (2012–2022). The purpose of our study was to perform a retrospective analysis of the spread of ASF to assess the role of wild boar in the epizootic [...] Read more.
(1) Background: African swine fever (ASF) has been present in Ukraine for more than ten years (2012–2022). The purpose of our study was to perform a retrospective analysis of the spread of ASF to assess the role of wild boar in the epizootic expansion in Ukraine. (2) Methods: Statistical materials were collected and the epizootic situation of ASF from 2012 to 2022 was examined. The potential sources of the African swine fever virus (ASFV) and transmission factors were analysed. The main factors exerting negative impacts on domestic pig production were also analysed. (3) Results: Consequently, from the results of the retrospective analysis of ASF outbreaks in Ukraine, the probability ratio of ASF outbreaks in the wild boar and domestic pig populations was determined. The data show a direct relationship between ASF outbreaks among wild boar and domestic pigs with the observed decay of wild boar outbreaks across the entire territory of Ukraine. At the same time, an increase in the number of wild boars has been observed in the Mykolaiv region, with a parallel spillover of outbreaks in domestic pigs. (4) Conclusions: The epidemiological situation observed for ASF in the wild boar population may suggest an endemic form of the disease. This may further complicate eradication programs and the protection of domestic pig farms from ASF outbreaks. An additional and major reason to control the ASF epizootic is the continuing military Russian offensive in Ukraine. Full article
(This article belongs to the Special Issue Swine Viral Diseases)
Show Figures

Figure 1

Back to TopTop