Novel Developments in Optoelectronic Materials and Devices

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 30 September 2025 | Viewed by 320

Special Issue Editor


E-Mail Website
Guest Editor
College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Interests: optoelectronic materials and devices; metamaterials; metasurfaces
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Optoelectronic materials and devices lie at the heart of modern technological advancements, driving innovations in renewable energy, telecommunications, displays, sensing, and biomedical applications. Recent breakthroughs in material synthesis, nanofabrication, and device engineering have unlocked unprecedented opportunities to enhance performance, sustainability, and scalability. This Special Issue aims to highlight cutting-edge research and interdisciplinary efforts shaping the future of optoelectronics, with a focus on novel materials, advanced device architectures, and emerging applications.

Scope of the Issue:

We invite original research articles, reviews, and perspectives addressing key challenges and opportunities in optoelectronics. Topics include, but are not limited to, the following:

Next-generation materials: perovskites, 2D materials, organic semiconductors, and quantum dots.
Advanced photonic and optoelectronic devices: LEDs, solar cells, photodetectors, lasers, and optical modulators.
Flexible, stretchable, and wearable optoelectronics for healthcare and IoT applications.
Integration of optoelectronic systems with AI-driven technologies and neuromorphic computing.
Novel characterization techniques and theoretical modeling of optoelectronic processes.
Sustainable fabrication methods and recycling strategies for eco-friendly devices.
Metamaterials and metasurfaces, and the related optoelectronic materials and devices.

Dr. Xufeng Jing
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optoelectronic materials
  • advanced photonic devices
  • perovskite semiconductors
  • flexible electronics
  • sustainable optoelectronics
  • metamaterials
  • metasurface

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 9562 KiB  
Article
Design of a Polarization-Insensitive and Wide-Angle Triple-Band Metamaterial Absorber
by Shaoxin Zheng, Manna Gu, Guilan Feng, Mingfeng Zheng, Tianqi Zhao and Xufeng Jing
Photonics 2025, 12(4), 386; https://doi.org/10.3390/photonics12040386 - 16 Apr 2025
Viewed by 200
Abstract
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two [...] Read more.
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two absorption frequencies are in the C-band, while the third absorption frequency is in the Ku-band, both of which are commonly used in satellite communication. The designed absorber consists of three differently sized regular hexagonal rings. To analyze the interaction mechanism between the electromagnetic wave and the absorber, we applied the theory of impedance matching and equivalent media to analyze the metamaterial properties of the absorber. In addition, the equivalent circuit model of the absorber has been analyzed. We then determined the existence of coupled electromagnetic resonances between the top and bottom surfaces by analyzing the distribution of the electric field, magnetic field, and surface currents on the absorber. By varying the polarization angle and incident angle of the incoming wave, we found that the absorber exhibits polarization insensitivity and wide-angle absorption characteristics. The TE and TM waves maintain more than 90% absorption efficiency up to incident angles of 50° and 60°, respectively. The absorber’s thickness is 1.07 mm, which is 0.0154 times the wavelength corresponding to the lowest resonant frequency (λ0), and the edge length of the subunit’s regular hexagon is 7.5 mm (0.108λ0), making the absorber sub-wavelength in scale while maintaining its compactness. The proposed absorber operates in the C-band and Ku-band, and can be applied in the field of satellite communications, achieving functions such as electromagnetic shielding and stealth. Full article
(This article belongs to the Special Issue Novel Developments in Optoelectronic Materials and Devices)
Show Figures

Figure 1

Back to TopTop