polymers-logo

Journal Browser

Journal Browser

Recent Advances in the Application of Polymer Materials in Building Construction

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 208

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Future Materials, University of Southern Queensland, Toowoomba, QLD 4350, Australia
Interests: polymer concrete; low carbon construction materials; landfill waste utilisation; short fibres; fibre composites; material characterisation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The aim of this special issue, Recent Advances in the Application of Polymer Materials in Building Construction, is to highlight and disseminate the latest research, innovations, and practical developments in the use of polymer-based materials within the construction industry. As construction demands evolve toward greater sustainability, resilience, and efficiency, polymers are playing an increasingly critical role in enabling advanced building technologies. This issue seeks to showcase original research articles, reviews, and case studies that explore novel polymer materials, manufacturing techniques, performance evaluations, and applications in areas such as structural components, insulation systems, protective coatings, adhesives, and smart building solutions. Contributions that address environmental challenges through recyclable, bio-based, or energy-efficient polymer solutions are particularly encouraged. By bringing together cutting-edge developments from academia and industry, this special issue aims to foster interdisciplinary dialogue, inspire future innovation, and support the advancement of sustainable and high-performance construction practices.

Dr. Wahid Ferdous
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced polymer composites
  • recycled polymer composites
  • biopolymer composites
  • durability and performance of polymer composites
  • sustainable construction materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 3290 KB  
Article
Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns
by Mengyao Li, Yi Hu, Lanzhe Rao, Liqiang Jiang, Jingbin Li, Shizhong Zhou, Hongyu Sun, Shi Peng, Xia Pang, Yuanjun Chen, Jun Hu and Ping Xie
Polymers 2025, 17(17), 2365; https://doi.org/10.3390/polym17172365 (registering DOI) - 30 Aug 2025
Abstract
To overcome brittle failure in conventional cold-formed steel–concrete (CFS-C) corner columns, this paper used fiber-reinforced concrete to replace ordinary concrete, investigating failure mechanisms and performance through systematic numerical simulations. A finite element model (FEM) was established and validated by experiments, and the errors [...] Read more.
To overcome brittle failure in conventional cold-formed steel–concrete (CFS-C) corner columns, this paper used fiber-reinforced concrete to replace ordinary concrete, investigating failure mechanisms and performance through systematic numerical simulations. A finite element model (FEM) was established and validated by experiments, and the errors for ultimate capacity were within 10%. A series of numerical models was established for parametric analyses focusing on the effects of the parameters of polypropylene fiber (PF), carbon fiber (CF), steel fiber (SF), and bamboo fiber (BF) with different volume dosages and the thickness of cold-formed steel (CFS) on the axial compression ultimate capacity and corresponding displacement of CFS composite corner columns. The results indicated that (1) PF effectiveness was dependent on steel thickness: thicker steel suppressed micro-defects, activated the toughening potential of PF, and increased the ultimate capacity of the columns by 24.8%. (2) CF had a critical dosage of 0.4%: at this dosage, CF increased the column’s ultimate capacity by 14.1% through stress redistribution, while when the dosage exceeded this value, fiber agglomeration caused a reduction in the column’s strength, with a maximum decrease of 16.2%. (3) SF effectiveness showed a linear increase: at a dosage of 1.6%, SF formed a synergistic three-dimensional bridging network and generated a confinement effect, increasing the column’s ultimate capacity by 36.5% and displacement by 92.2%. (4) BF mainly improved the ductility of columns: through crack bridging and pull-out energy dissipation, BF increased column displacement by 33.2%. (5) The modified Eurocode 4 formula could reduce the calculation error of ultimate capacity from 6.3% to within 1%. The findings guide optimal fiber selection and dosage in practice, promoting such columns’ use in seismic and load-bearing structures. Full article
Back to TopTop