polymers-logo

Journal Browser

Journal Browser

Life Cycle and Utilization of Lignocellulosic Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 829

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia
Interests: wood chemistry; thermal modification; analytical wood chemistry; cellulose; hemicelluloses; lignin; size exclusion chromatography; high-performance liquid chromatography; fourier-transform infrared spectroscopy

E-Mail Website
Guest Editor Assistant
Faculty of Forestry and Wood Sciences of the Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol, Czech Republic
Interests: wood chemistry; chemical processing of wood; cellulose; fiber composites; pulp and papermaking; nanomaterials; adhesives and coatings; material degradation; chromophores; wood protection and conservation; wood waste utilization; instrumental analyses

Special Issue Information

Dear Colleagues,

This Special Issue on the “Life Cycle and Utilization of Lignocellulosic Materials” is devoted to disseminating high-quality original research articles or comprehensive reviews in this interdisciplinary field.

The life cycle of lignocellulosic materials—containing three basic natural polymers: cellulose, hemicelluloses, and lignin—highlights their potential as abundant renewable resources, particularly in the context of sustainable energy, material production, and carbon sequestration. It refers to the stages that these plant-based materials go through, from their growth in nature to their processing, use, and eventual disposal or recycling. Utilizing lignocellulosic materials is a key area of innovation with the potential to provide alternatives to petroleum-based products, reduce greenhouse gas emissions, minimize waste, reduce carbon footprints, and promote circular economies. While there are challenges to overcome in terms of processing and cost, ongoing research and technological advancements hold promise for expanding the scope of lignocellulose applications in the industrial, environmental, and energy sectors.

Potential topics include, but are not limited to:

  • Growth and harvesting (deciduous and coniferous trees, plant-based biomaterials for fiber, starch, sugar, cellulose or oil production, etc.);
  • Pretreatment and conversion (enzyme optimization, biofuels, bio-based chemicals, etc.);
  • Development, features, and uses (wood-based construction materials, pulp and paper, lignin-based materials, bioplastics, adhesives, biocomposites, textile, medicine, animal feed, soil amendments, );
  • End of life processing (the degradation, recycling, and reuse of lignocellulosic materials, including energy recovery).

Authors are welcome to submit their latest research findings on related topics focused on biopolymers. We look forward to our future collaboration.

Prof. Dr. František Kačík
Guest Editor

Dr. Tereza Jurczyková
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biopolymers
  • cellulose
  • hemicelluloses
  • lignin
  • renewable resources
  • wood processing and modification
  • wood degradation and protection
  • plant-based materials
  • life cycle assessment
  • carbon footprints

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 2419 KiB  
Article
Characterization and Kinetic Study of Agricultural Biomass Orange Peel Waste Combustion Using TGA Data
by Suleiman Mousa, Ibrahim Dubdub, Majdi Ameen Alfaiad, Mohammad Yousef Younes and Mohamed Anwar Ismail
Polymers 2025, 17(8), 1113; https://doi.org/10.3390/polym17081113 - 19 Apr 2025
Viewed by 72
Abstract
This study presents a comprehensive kinetic and thermodynamic investigation of dried orange peel (OP) combustion, employing thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) at high heating rates (20–80 K min−1). This gap in high heating rate analysis motivates the novelty of [...] Read more.
This study presents a comprehensive kinetic and thermodynamic investigation of dried orange peel (OP) combustion, employing thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) at high heating rates (20–80 K min−1). This gap in high heating rate analysis motivates the novelty of present study, by investigating OP combustion at 20, 40, 60, and 80 K min−1 using TGA, to closely simulate rapid thermal conditions typical of industrial combustion processes. Thermal decomposition occurred in three distinct stages corresponding sequentially to the dehydration, degradation of hemicellulose, cellulose, and lignin. Activation energy (Ea) was calculated using six model-free methods—Friedman (FR), Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY)—yielding values between 64 and 309 kJ mol−1. The Ea increased progressively from the initial to final degradation stages, reflecting the thermal stability differences among biomass constituents. Further kinetic analysis using the Coats–Redfern (CR) model-fitting method identified that first-order (F1), second-order (F2), and diffusion-based mechanisms (D1, D2, D3) effectively describe OP combustion. Calculated thermodynamic parameters—including enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS)—indicated the endothermic and increasingly non-spontaneous nature of the reactions at higher conversions. These findings demonstrate the potential of OP, an abundant agricultural waste product, as a viable bioenergy resource, contributing valuable insights into sustainable combustion processes. Full article
(This article belongs to the Special Issue Life Cycle and Utilization of Lignocellulosic Materials)
Show Figures

Figure 1

16 pages, 3441 KiB  
Article
Utilization of Waste Rubber Materials After the End of Their Life Cycle in the Production of Three-Layer Particleboards—Physical and Mechanical Properties
by Vladimír Mancel, Iveta Čabalová, Jozef Krilek, Çağrı Olgun, Mustafa Öncel, Önder Tor, Tomasz Szul, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Polymers 2025, 17(7), 998; https://doi.org/10.3390/polym17070998 - 7 Apr 2025
Viewed by 382
Abstract
The aim of the article was to test new types of rubber-containing particleboards created from waste materials, which positively contributes to environmental protection, saving primary resources and reducing production costs. This article focuses on the study of three-layer particleboards made from wood particles [...] Read more.
The aim of the article was to test new types of rubber-containing particleboards created from waste materials, which positively contributes to environmental protection, saving primary resources and reducing production costs. This article focuses on the study of three-layer particleboards made from wood particles (spruce non-treated beams) and waste rubber granulates (tires, mixture of seals and carpets, internal flammable cables, external non-flammable cables). Urea–formaldehyde glue, melamine–formaldehyde glue, paraffin emulsion, and ammonium nitrate were used as a binders and excipients in the manufacturing of particleboards. In the core layer of each particleboard, 10% of the weight was made up of rubber granulate. Physical properties (density, water absorption, thickness swelling) and mechanical properties (internal bonding strength, modulus of rupture, modulus of elasticity, screw driving torque) were assessed from this perspective using current EN technical standards. According to the findings, the average densities of all particleboards were comparable to each other in a range from 0.692 to 0.704 g·cm−3. The lowest average water absorption and thickness swelling reached particleboards containing 10% of waste internal flammable cables, namely 32.79% for water absorption and 13.21% for thickness swelling. The highest average internal bonding strength reached particleboards without rubber filler and particleboards containing 10% of waste external non-flammable cables, namely 0.52 MPa for both types. The highest average modulus of rupture reached particleboards without rubber filler, namely 12.44 MPa. The highest average modulus of elasticity reached particleboards containing 10% of waste internal flammable cables, namely 2206.29 MPa, and the highest screw driving torque reached particleboards without rubber filler, namely 0.46 N·m for seating torque and 1.44 N·m for stripping torque. The results show that particleboards containing waste external non-flammable cables and particleboards containing waste internal flammable cables achieved comparable results to particleboards without rubber filler, which provides a good basis for a new way of utilizing this type of waste in the form of producing new wood–rubber composites. Full article
(This article belongs to the Special Issue Life Cycle and Utilization of Lignocellulosic Materials)
Show Figures

Figure 1

Back to TopTop