Biodegradable Polymer Nanocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 21070

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan
Interests: synthesis and characterization of polymer nanocomposites; biodegradable polymers; polymer nanocomposites; degradation behavior of biodegradable polymer nanocomposites; structural analysis of polymer; biominetics; polymers for agriculture mulching films
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

In recent years, the development of environmentally-friendly polymeric materials, which are mainly derived from biodegradable polymers from both fossil-fuel and natural resources with excellent physical properties, has received a lot of research attention. These biodegradable polymers include poly(lactic acid), poly(3-hydroxybutyrate), poly(butylene succinate), poly(butylene adipate), poly(butylene succinate-co-adipate), poly(butylene adipate-co-terephthalate), and poly(butylene succinate-co-terephthalate). The use of nano-reinforcements in biodegradable polymers has demonstrated significant promise for the design of new sustainable polymeric materials with desired properties. These nano-reinforcements include two-dimensional layered silicates or hydroxide, one-dimensional carbon nanotubes or nanocellulose crystals, zero-dimensional metal or metal oxides nanoparticles, etc. Therefore, numerous investigations have been conducted to fabricate biodegradable polymer/nano-reinforcement nanocomposite materials because of their exceptional physical and mechanical properties, which are comparable to those of neat polymer matrices.

The aim of this Special Issue is to highlight the progress and fundamental aspects for the synthesis, processing procedures, characterization, physical properties, applications, and further developments of biodegradable polymer nanocomposites.

Prof. Tzong-Ming Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biodegradable polymers
  • biodegradable copolymers
  • nano-reinforcements
  • nanocomposites
  • thermal properties
  • mechanical properties
  • degradation behavior
  • applications of biodegradable polymer nanocomposites

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 6687 KiB  
Article
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles
by José Luis Aparicio-Collado, Juan José Novoa, José Molina-Mateo, Constantino Torregrosa-Cabanilles, Ángel Serrano-Aroca and Roser Sabater i Serra
Polymers 2021, 13(1), 57; https://doi.org/10.3390/polym13010057 - 25 Dec 2020
Cited by 28 | Viewed by 3972
Abstract
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and [...] Read more.
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Graphical abstract

16 pages, 5266 KiB  
Article
Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles
by Cheng-Wei Tu, Fang-Chang Tsai, Jem-Kun Chen, Huei-Ping Wang, Rong-Ho Lee, Jiawei Zhang, Tao Chen, Chung-Chi Wang and Chih-Feng Huang
Polymers 2020, 12(12), 2835; https://doi.org/10.3390/polym12122835 - 28 Nov 2020
Cited by 21 | Viewed by 3074
Abstract
To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (N,N′-methylenebisacrylamide (MBAA)). Similar [...] Read more.
To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (N,N′-methylenebisacrylamide (MBAA)). Similar to the two-step processes, different contents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN: 1, 2, and 3 wt.%) were initially dispersed in the first network solutions and then crosslinked. The TOCN-containing PAMPS first networks subsequently soaked in AA and crosslinker and conducted the second network crosslinking reactions (TOCN was then abbreviated as T for DN samples). As the third step, various (T–)DN hydrogels were then treated with different concentrations of FeCl3(aq) solutions (5, 50, 100, and 200 mM). Through incorporations of ferric ions into (T–)DN hydrogels, notably, three purposes are targeted: (i) strengthen the (T–)DN hydrogels through ionic bonding, (ii) significantly render ionic conductivity of hydrogels, and (iii) serve as a catalyst for the forth step to proceed with in situ chemical oxidative polymerizations of pyrroles to afford polypyrrole-containing (sample abbr.: Py) hydrogels [i.e., (T–)Py–DN samples]. The characteristic functional groups of PAMPS, PAA, and Py were confirmed by FT–IR. Uniform microstructures were observed by cryo scanning electron microscopy (cryo-SEM). These results indicated that homogeneous composites of T–Py–DN hydrogels were obtained through the four-step process. All dry samples showed similar thermal degradation behaviors from the thermogravimetric analysis (TGA). The T2–Py5–DN sample (i.e., containing 2 wt.% TOCN with 5 mM FeCl3(aq) treatment) showed the best tensile strength and strain at breaking properties (i.e., σTb = 450 kPa and εTb = 106%). With the same compositions, a high conductivity of 3.34 × 10−3 S/cm was acquired. The tough T2–Py5–DN hydrogel displayed good conductive reversibility during several “stretching-and-releasing” cycles of 50–100–0%, demonstrating a promising candidate for bioelectronic or biomaterial applications. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Graphical abstract

22 pages, 7012 KiB  
Article
Composites Based on Poly(Lactic Acid) (PLA) and SBA-15: Effect of Mesoporous Silica on Thermal Stability and on Isothermal Crystallization from Either Glass or Molten State
by Tamara M. Díez-Rodríguez, Enrique Blázquez-Blázquez, Ernesto Pérez and María L. Cerrada
Polymers 2020, 12(11), 2743; https://doi.org/10.3390/polym12112743 - 19 Nov 2020
Cited by 15 | Viewed by 2748
Abstract
Several composites based on an L-rich poly(lactic acid) (PLA) with different contents of mesoporous Santa Barbara Amorphous (SBA-15) silica were prepared in order to evaluate the effect of the mesoporous silica on the resultant PLA materials by examining morphological aspects, changes in [...] Read more.
Several composites based on an L-rich poly(lactic acid) (PLA) with different contents of mesoporous Santa Barbara Amorphous (SBA-15) silica were prepared in order to evaluate the effect of the mesoporous silica on the resultant PLA materials by examining morphological aspects, changes in PLA phases and their transitions, and, primarily, the influence on some final properties. Melt extrusion was chosen for the obtainment of the composites, followed by quenching from the melt to prepare films. Completely amorphous samples were then attained, as deduced from X-ray diffraction and differential scanning calorimetry (DSC) analyses. Thermogravimetric analysis (TGA) results demonstrated that the presence of SBA-15 particles in the PLA matrix did not exert any significant influence on the thermal decomposition of these composites. An important nucleation effect of the silica was found in PLA, especially under isothermal crystallization either from the melt or from its glassy state. As expected, isothermal crystallization from the glass was considerably faster than from the molten state, and these high differences were also responsible for a more considerable nucleating role of SBA-15 when crystallizing from the melt. It is remarkable that the PLA under analysis showed very close temperatures for cold crystallization and its subsequent melting. Moreover, the type of developed polymorphs did not accomplish the common rules previously described in the literature. Thus, all the isothermal experiments led to exclusive formation of the α modification, and the observation of the α’ crystals required the annealing for long times at temperatures below 80 °C, as ascertained by both DSC and X-ray diffraction experiments. Finally, microhardness (MH) measurements indicated a competition between the PLA physical aging and the silica reinforcement effect in the as-processed amorphous films. Physical aging in the neat PLA was much more important than in the PLA matrix that constituted the composites. Accordingly, the MH trend with SBA-15 content was strongly dependent on aging times. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Graphical abstract

15 pages, 4298 KiB  
Article
Nanocomposite Materials with Poly(l-lactic Acid) and Transition-Metal Dichalcogenide Nanosheets 2D-TMDCs WS2
by Mohammed Naffakh, Miriam Fernández, Peter S. Shuttleworth, Ana M. García and Diego A. Moreno
Polymers 2020, 12(11), 2699; https://doi.org/10.3390/polym12112699 - 16 Nov 2020
Cited by 7 | Viewed by 1927
Abstract
Layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) were introduced via melt processing into poly(l-lactic acid) (PLLA) to generate PLLA/2D-WS2 nanocomposite materials. The effects of the 2D-WS2 on the morphology, crystallization, and biodegradation behavior of [...] Read more.
Layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) were introduced via melt processing into poly(l-lactic acid) (PLLA) to generate PLLA/2D-WS2 nanocomposite materials. The effects of the 2D-WS2 on the morphology, crystallization, and biodegradation behavior of PLLA were investigated. In particular, the non-isothermal melt-crystallization of neat PLLA and PLLA/2D-WS2 nanocomposites were analyzed in detail by varying both the cooling rate and 2D-WS2 loading. The kinetic parameters of PLLA chain crystallization are successfully described using the Liu model. It was found that the PLLA crystallization rate was reduced with 2D-WS2 incorporation, while the crystallization mechanism and crystal structure of PLLA remained unchanged in spite of nanoparticle loading. This was due to the PLLA chains not being able to easily adsorb on the WS2 nanosheets, hindering crystal growth. In addition, from surface morphology analysis, it was observed that the addition of 2D-WS2 facilitated the enzymatic degradation of poorly biodegradable PLLA using a promising strain of actinobacteria, Lentzea waywayandensis. The identification of more suitable enzymes to break down PLLA nanocomposites will open up new avenues of investigation and development, and it will also lead to more environmentally friendly, safer, and economic routes for bioplastic waste management. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Graphical abstract

14 pages, 14798 KiB  
Article
Novel Color Change Film as a Time–Temperature Indicator Using Polydiacetylene/Silver Nanoparticles Embedded in Carboxymethyl Cellulose
by Aphisit Saenjaiban, Teeranuch Singtisan, Panuwat Suppakul, Kittisak Jantanasakulwong, Winita Punyodom and Pornchai Rachtanapun
Polymers 2020, 12(10), 2306; https://doi.org/10.3390/polym12102306 - 8 Oct 2020
Cited by 32 | Viewed by 3712
Abstract
Time–temperature indicators (TTIs) can be important tools in product applications to monitor food quality losses, especially for fruits and vegetables. In this context, the effects of silver nanoparticles (AgNPs) and glycerol on the color change of polydiacetylene/AgNPs (PDA/AgNPs) embedded in carboxymethyl cellulose (CMC) [...] Read more.
Time–temperature indicators (TTIs) can be important tools in product applications to monitor food quality losses, especially for fruits and vegetables. In this context, the effects of silver nanoparticles (AgNPs) and glycerol on the color change of polydiacetylene/AgNPs (PDA/AgNPs) embedded in carboxymethyl cellulose (CMC) film as time–temperature indicators (TTIs) were investigated. A CMC film prepared with 30 mg/L AgNPs and a 1:3 (v/v) PDA:AgNP ratio exhibited a faster color change than under other conditions. At 35 °C, the films with PDA/AgNPs changed color from purplish-blue to purple and purple to reddish-purple over time due to the higher thermal conductivity of AgNPs and larger PDA surface area exposed to specific temperatures. The total color difference (TCD) of PDA/AgNP-embedded CMC film directly changed with regard to time and temperature. However, adding glycerol to the system resulted in a symmetrical chemical structure, a factor that delayed the color change. Scanning electron micrographs showed AgNPs embedded in the CMC films. Transmission electron micrographs indicated a core-shell structure of PDA/AgNP vesicles in the CMC matrix. PDA/AgNP vesicles were confirmed by second derivative Fourier transform infrared spectroscopy, with a new peak at 1390–1150 cm−1. The kinetics of TTIs from PDA/AgNP-embedded CMC films yielded an activation energy of 58.70 kJ/mol. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Graphical abstract

14 pages, 5361 KiB  
Article
Synthesis, Physical Properties and Enzymatic Degradation of Biodegradable Nanocomposites Fabricated Using Poly(Butylene Carbonate-Co-Terephthalate) and Organically Modified Layered Zinc Phenylphosphonate
by Li-Ying Tseng, Erh-Chiang Chen, Jie-Mao Wang and Tzong-Ming Wu
Polymers 2020, 12(9), 2149; https://doi.org/10.3390/polym12092149 - 21 Sep 2020
Cited by 4 | Viewed by 2331
Abstract
A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate) (PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were manufactured using the solution [...] Read more.
A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate) (PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were manufactured using the solution mixing process. Wide-angle X-ray diffraction and transmission electron microscopy were used to examine the morphology of PBCT-85/m-PPZn nanocomposites. Both results exhibited that the stacking layers of m-PPZn were intercalated into the PBCT-85 polymer matrix. The additional m-PPZn into PBCT-85 copolymer matrix significantly enhanced the storage modulus at −70 °C, as compared to that of neat PBCT-85. The lipase from Pseudomonas sp. was used to investigate the enzymatic degradation of PBCT-85/m-PPZn nanocomposites. The weight loss decreased as the loading of m-PPZn increased, indicating that the existence of m-PPZn inhibits the degradation of the PBCT-85 copolymers. This result might be attributed to the higher degree of contact angle for PBCT-85/m-PPZn nanocomposites. The PBCT-85/m-PPZn composites approved by MTT assay are appropriate for cell growth and might have potential in the application of biomedical materials. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Figure 1

12 pages, 4410 KiB  
Article
Enhanced Photodegradation Stability in Poly(butylene adipate-co-terephthalate) Composites Using Organically Modified Layered Zinc Phenylphosphonate
by Jie-Mao Wang, Hao Wang, Erh-Chiang Chen, Yun-Ju Chen and Tzong-Ming Wu
Polymers 2020, 12(9), 1968; https://doi.org/10.3390/polym12091968 - 30 Aug 2020
Cited by 8 | Viewed by 2783
Abstract
The enhancement of the ultraviolet (UV) photodegradation resistance of biodegradable polymers can improve their application efficacy in a natural environment. In this study, the hexadecylamine modified layered zinc phenylphosphonate (m-PPZn) was used as a UV protection additive for poly(butylene adipate-co-terephthalate) (PBAT) [...] Read more.
The enhancement of the ultraviolet (UV) photodegradation resistance of biodegradable polymers can improve their application efficacy in a natural environment. In this study, the hexadecylamine modified layered zinc phenylphosphonate (m-PPZn) was used as a UV protection additive for poly(butylene adipate-co-terephthalate) (PBAT) via solution mixing. The results from the Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction analysis of the m-PPZn indicated the occurrence of hexadecylamine intercalation. FTIR and gel permeation chromatography were used to characterize the evolution of the PBAT/m-PPZn composites after being artificially irradiated via a light source. The various functional groups produced via photodegradation were analyzed to illustrate the enhanced UV protection ability of m-PPZn in the composite materials. From the appearance, the yellowness index of the PBAT/m-PPZn composite materials was significantly lower than that of the pure PBAT matrix due to photodegradation. These results were confirmed by the molecular weight reduction in PBAT with increasing m-PPZn content, possibly due to the UV photon energy reflection by the m-PPZn. This study presents a novel approach of improving the UV photodegradation of a biodegradable polymer using an organically modified layered zinc phenylphosphonate composite. Full article
(This article belongs to the Special Issue Biodegradable Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop