polymers-logo

Journal Browser

Journal Browser

Smart and Intelligent Composite Structures for Innovative Industrial and Space Applications: Fiber-Reinforced Polymer Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (30 August 2024) | Viewed by 7501

Special Issue Editors


E-Mail Website
Guest Editor
RNANO Lab - Research Lab of Advanced, Composite, Nanomaterials & Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, Zographos, GR-15780 Athens, Greece
Interests: polymers nanocomposites; carbon based materials; advanced composite materials; nanocomposites; nanoindentation; nanomechanics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
RNANO Lab - Research Lab of Advanced, Composite, Nanomaterials & Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, GR-15780 Zographos Athens, Greece
Interests: carbon nanomaterials; carbon nanotubes; nanocomposites; coatings; chemical vapour deposition

Special Issue Information

Dear Colleagues,

This special issue of Polymers Journal is dedicated to Fiber-reinforced Polymer Composites. We are expecting to receive papers dealing with smart and intelligent fiber-based polymeric composite structures for innovative industrial applications. The topics of the special issue includes but not limited to: the synergetic effect of nanomaterials in reinforcing fiber-based composite materials, (smart) polymeric nanocomposites, novel processing technologies for fiber-based composites, smart functionalities of fiber reinforced composites, multifunctional fiber-based polymer composites, modelling and simulation for fiber-reinforced polymer composites, recycling of thermoplastics and thermosets reinforced with fibers.

Prof. Dr. Costas Charitidis
Dr. Aikaterini-Flora Trompeta
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  •  carbon fibers
  •  FRPs (CFRPs, GFRPs, etc)
  •  self-sensing
  •  self-morphing
  •  shape memory polymers
  •  nanocomposites
  •  smart properties
  •  properties simulation
  •  recycling of thermoplastics and thermosets
  •  manufacturing technologies for FRPs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1932 KiB  
Article
A Novel Plasma-Enhanced Solvolysis as Alternative for Recycling Composites
by Dimitrios Marinis, Dionysios Markatos, Ergina Farsari, Eleftherios Amanatides, Dimitrios Mataras and Spiros Pantelakis
Polymers 2024, 16(19), 2836; https://doi.org/10.3390/polym16192836 - 7 Oct 2024
Viewed by 431
Abstract
In this work, a plasma-assisted solvolysis method is proposed as an alternative method for the oxidative degradation of carbon fiber-reinforced composites (CFRCs). Nitrogen plasma ignition within bubbles in a concentrated nitric acid solution is employed, combining the synergistic effects of traditional nitric acid [...] Read more.
In this work, a plasma-assisted solvolysis method is proposed as an alternative method for the oxidative degradation of carbon fiber-reinforced composites (CFRCs). Nitrogen plasma ignition within bubbles in a concentrated nitric acid solution is employed, combining the synergistic effects of traditional nitric acid solvolysis and plasma chemistry. A comprehensive process flowchart, including steps such as composite pretreatment, matrix dissolution, fiber recovery and cleaning, solvent regeneration and reuse, and waste treatment, is also discussed, highlighting their importance in process effectiveness. Moreover, a study on the effect of the composite’s mass on the plasma-enhanced solvolysis process is conducted, and the results are exploited for the calculation of critical parameters such as efficiency, recovery rates, capacity, fibers quality, energy consumption, consumption of raw materials, operational and installation costs, and environmental impact. A preliminary comparison to other recycling methods based on the literature findings is also attempted, and preliminary metrics to assess the sustainability of the recycling process are proposed. Full article
Show Figures

Graphical abstract

11 pages, 6201 KiB  
Article
Compression Molding of Low-Density Polyethylene Matrix/Glass-Fiber-Reinforced Thick Laminates
by Fabrizio Quadrini, Giorgio Patrizii, Alice Proietti, Leandro Iorio, Denise Bellisario and Loredana Santo
Polymers 2024, 16(19), 2722; https://doi.org/10.3390/polym16192722 - 26 Sep 2024
Viewed by 519
Abstract
Thermoplastic fiberglass was compression molded in the form of thick panels with a nominal thickness of 10 mm and a size of 300 × 300 mm2. A simplified procedure was adopted to speed up the lamination procedure and adapt it to [...] Read more.
Thermoplastic fiberglass was compression molded in the form of thick panels with a nominal thickness of 10 mm and a size of 300 × 300 mm2. A simplified procedure was adopted to speed up the lamination procedure and adapt it to the aim of recycling waste, glass fibers, fabrics, and thermoplastic films. Low density polyethylene was used as a matrix to simplify the laboratory process, but the same procedure can be extended to other thermoplastic film, such as polyamide. The final thermoplastic composite shows unique properties in terms of its repairability, and its performance was improved by increasing the number of repairing repetitions. For this aim, a repairability test was designed in the bending configuration, and three consecutive cycles of bending/repairing/bending were carried out. The static mechanical properties of the final thermoplastic composite were, conversely, low in comparison with traditional fiberglass because of the choice of a polyethylene matrix. The bending tests showed that the maximum strength was lower than 10 MPa and the elastic modulus was less than 1 GPa. Nevertheless, the toughness of the thermoplastic composite was high, and the samples continued to deform under bending without splitting into two halves. Full article
Show Figures

Graphical abstract

19 pages, 4178 KiB  
Article
Cross-Scale Industrial Manufacturing of Multifunctional Glass Fiber/Epoxy Composite Tubes via a Purposely Modified Filament Winding Production Line
by George Karalis, Lampros Koutsotolis, Angelos Voudouris Itksaras, Thomai Tiriakidi, Nikolaos Tiriakidis, Kosmas Tiriakidis and Alkiviadis S. Paipetis
Polymers 2024, 16(12), 1754; https://doi.org/10.3390/polym16121754 - 20 Jun 2024
Viewed by 694
Abstract
In the present research work is demonstrated a cross-scale manufacturing approach for the production of multifunctional glass fiber reinforced polymer (GFRP) composite tubes with a purposely redesigned filament winding process. Up until now, limited studies have been reported towards the multiscale reinforcement direction [...] Read more.
In the present research work is demonstrated a cross-scale manufacturing approach for the production of multifunctional glass fiber reinforced polymer (GFRP) composite tubes with a purposely redesigned filament winding process. Up until now, limited studies have been reported towards the multiscale reinforcement direction of continuous fibers for the manufacturing of hierarchical composites at the industrial level. This study involved the development of two different multi-walled carbon nanotube (MWCNT) aqueous-based inks, which were employed for the modification of commercial glass fiber (GF) reinforcing tows via a bath coating unit in a pilot production line. The obtained multifunctional GFRP tubes presented a variety of characteristics in relation to their final mechanical, hydrothermal aging, electrical, thermal and thermoelectric properties. Results revealed that the two individual systems exhibited pronounced differences both in crushing behavior and durability performance. Interestingly, for lateral compression the MWCNT coatings comprising a polymeric dispersant minorly affected the mechanical response of the produced tubes. The crashworthiness indicators of the multifunctional tubes displayed a slight 5% variation to the respective reference values, combined with a more ductile behavior. Moreover, regarding the bulk electrical and thermal conductivity values, as well as the Seebeck coefficient factor, the corresponding tubes displayed a variance of 233% and 19% and an opposite semi-conducting sign denoting a p- and n-type character, respectively. Full article
Show Figures

Figure 1

13 pages, 4414 KiB  
Article
Investigation of Carbon Fibres Reclamation by Pyrolysis Process for Their Reuse Potential
by Stefania Termine, Valentina Naxaki, Dionisis Semitekolos, Aikaterini-Flora Trompeta, Massimo Rovere, Alberto Tagliaferro and Costas Charitidis
Polymers 2023, 15(3), 768; https://doi.org/10.3390/polym15030768 - 2 Feb 2023
Cited by 7 | Viewed by 2497
Abstract
During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route [...] Read more.
During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route and because of this, not only the environment is affected, but also high added-value materials, such as carbon fibres (CFs) are lost without further valorisation. Several recycling technologies have been suggested, such as pyrolysis, to retrieve the CF reinforcement from the CFRPs. However, pyrolysis produces CFs that have residual resin and pyrolytic carbon at their surface. In order to retrieve clean long fibres, oxidation treatment in high temperatures is required. The oxidation treatment, however, has a high impact on the mechanical properties of the reclaimed CFs; therefore, an optimised pyrolysis procedure of CFRPs and post-pyrolysis treatment of reclaimed fibres (rCFs) is required. In this study, CFRPs have been subjected to pyrolysis to investigate the reclamation of CF fabrics in their primal form. The temperature of 550 °C was selected as the optimum processing temperature for the investigated composites. A parametric study on the post-pyrolysis treatment was performed in order to remove the residues from the fabrics and at the same time to investigate the CFs reusability, in terms of their mechanical and surface properties. Full article
Show Figures

Figure 1

13 pages, 6145 KiB  
Article
Employment of 3D-Printed Bilayer Structures with Embedded Continuous Fibers for Thermal Management Applications: An Axial Cooling 4D-Printed Fan Application Case Study
by Panagiotis Zouboulis, Elias P. Koumoulos and Anna Karatza
Polymers 2022, 14(19), 3952; https://doi.org/10.3390/polym14193952 - 21 Sep 2022
Cited by 1 | Viewed by 1691
Abstract
Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber [...] Read more.
Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber patterns and materials to achieve programmable and reversible transformations that can be exploited for thermal management applications. Stemming from this investigation’s results, an axial cooling fan prototype is designed and fabricated with composite blades that passively alter their shape, specifically their curvature and twist angle, under different operating temperatures. A series of computational fluid dynamics (CFD) simulations are performed, subjecting the fan’s geometry to different flow temperatures to measure differences in airflow deriving from the induced shape transformations. Corresponding experimental trials are additionally performed, aiming to validate the simulation results. The results indicate the potential of utilizing bilayer self-morphing configurations for the fabrication of smart components for cooling purposes. Full article
Show Figures

Figure 1

Back to TopTop