Vaccine Formulation for Infectious Diseases and Adjuvant Mechanisms of Action

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Vaccine Adjuvants".

Deadline for manuscript submissions: closed (15 February 2021) | Viewed by 61991

Special Issue Editors


E-Mail Website
Guest Editor
Vaccine and Infectious Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
Interests: mucosal immunology; vaccine development; adjuvants; antigen selection; pigs; reproductive tract; intestinal tract

E-Mail Website
Guest Editor
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
Interests: vaccine formulations; nanotechnology; antigen delivery; adjuvant delivery; cancer immunotherapy

E-Mail Website
Guest Editor
VIDO-International Vaccine Center & School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
Interests: adjuvants and their mechanisms of action; vaccines for infectious diseases; immunobiology of Toll-like receptors; mucosal immunity

Special Issue Information

Dear Colleagues,

The ultimate goal for vaccination is the generation of a safe and effective immune response that protects against diseases. How adjuvants and vaccine formulation can influence the innate imune response and how the cell-mediated and antibody-mediated arms of the adaptive immune response contribute to the development of protective immunity are still largely unknown. We invite you to submit a research article or a review article discussing vaccine formulation and mechanisms of action, especially as they pertain to infectious diseases. The specific themes are:

  • Understanding the molecular and immunological mechanisms of adjuvants.
  • Novel carriers or delivery vehicles for vaccines and how they function.
  • The development of targeted mucosal vaccines.
  • Nanoparticles or microparticles and their modes of action.
  • How adjuvants contribute to development of immunological memory.
  • Novel vaccine formulations and delivery platforms for livestock.

Preference will be given to articles that focus on humans or the target animal species.

Dr. Heather L. Wilson
Dr. Azita Haddadi
Dr. George Mutwiri
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vaccine formulation
  • adjuvants
  • mechanims of action
  • livestock
  • humans
  • mice
  • nanoparticles
  • mucosal
  • systemic
  • antibody-mediated
  • cell-mediated
  • delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 180 KiB  
Editorial
Vaccine Formulation for Infectious Diseases and Adjuvant Mechanisms of Action
by Heather L. Wilson, Azita Haddadi and George K. Mutwiri
Vaccines 2021, 9(6), 667; https://doi.org/10.3390/vaccines9060667 - 18 Jun 2021
Cited by 1 | Viewed by 2166
Abstract
The ultimate goal for vaccination is the generation of a safe and effective immune response that protects against diseases [...] Full article

Research

Jump to: Editorial, Review

15 pages, 1377 KiB  
Article
The Adjuvants Polyphosphazene (PCEP) and a Combination of Curdlan Plus Leptin Promote a Th17-Type Immune Response to an Intramuscular Vaccine in Mice
by Alyssa Chaffey, Glenn Hamonic, Dylan Chand, George K. Mutwiri and Heather L. Wilson
Vaccines 2021, 9(5), 507; https://doi.org/10.3390/vaccines9050507 - 14 May 2021
Cited by 4 | Viewed by 3788
Abstract
Our aim was to determine whether polyphosphazene (PCEP), Curdlan (β-glucan, a dectin-1 agonist), and Leptin could act as adjuvants to promote a Th17-type adaptive immune response in mice. Mice were vaccinated via the intramuscular route then boosted three weeks later with Ovalbumin plus: [...] Read more.
Our aim was to determine whether polyphosphazene (PCEP), Curdlan (β-glucan, a dectin-1 agonist), and Leptin could act as adjuvants to promote a Th17-type adaptive immune response in mice. Mice were vaccinated via the intramuscular route then boosted three weeks later with Ovalbumin plus: PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, or saline. Mice vaccinated with OVA+PCEP and OVA+Curdlan+Leptin showed significantly higher frequency of antigen-specific CD4+ T cells secreting IL-17 relative to OVA-vaccinated mice. No formulation increased the frequency of CD4+ T cells secreting IL-4 or IFNγ. Since activation of innate immunity precedes the development of adaptive immunity, we wished to establish whether induction of Th17-type immunity could be predicted from in vitro experiments and/or from the local cytokine environment after immunization with adjuvants alone. Elevated IL-6 and TGFβ with reduced secretion of IL-12 is a cytokine milieu known to promote differentiation of Th17-type immunity. We injected the immunostimulants or saline buffer into murine thigh muscles and measured acute local cytokine production. PCEP induced significant production of IL-6 and reduced IL-12 production in muscle but it did not lead to elevated TGFβ production. Curdlan+Leptin injected into muscle induced significant production of TGFβ and IL-17 but not IL-6 or IL-12. We also stimulated splenocytes with media or PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, PCEP+Leptin, and PCEP+Curdlan+Leptin and measured cytokine production. PCEP stimulation of splenocytes failed to induce significant production of IL-6, IL-12, TGFβ, or IL-17 and therefore ex vivo splenocyte stimulation failed to predict the increased frequency of Th17-type T cells in response to the vaccine. Curdlan-stimulated splenocytes produced Th1-type, inducing cytokine, IL-12. Curdlan+/-PCEP stimulated TGF-β production and Curdlan+Leptin+/- PCEP induced secretion of IL-17. We conclude that PCEP as well as Curdlan+Leptin are Th17-type vaccine adjuvants in mice but that cytokines produced in response to these adjuvants in muscle after injection or in ex vivo cultured splenocytes did not predict their role as a Th17-type adjuvant. Together, these data suggest that the cytokine environments induced by these immunostimulants did not predict induction of an antigen-specific Th17-type adaptive immune response. This is the first report of these adjuvants inducing a Th17-type adaptive immune response. Full article
Show Figures

Figure 1

13 pages, 1472 KiB  
Article
Immunogenicity of Varicella-Zoster Virus Glycoprotein E Formulated with Lipid Nanoparticles and Nucleic Immunostimulators in Mice
by Han Cao, Yunfei Wang, Ning Luan and Cunbao Liu
Vaccines 2021, 9(4), 310; https://doi.org/10.3390/vaccines9040310 - 25 Mar 2021
Cited by 15 | Viewed by 5145
Abstract
Theoretically, the subunit herpes zoster vaccine ShingrixTM could be used as a varicella vaccine that avoids the risk of developing shingles from vaccination, but bedside mixing strategies and the limited supply of the adjuvant component QS21 have made its application economically impracticable. [...] Read more.
Theoretically, the subunit herpes zoster vaccine ShingrixTM could be used as a varicella vaccine that avoids the risk of developing shingles from vaccination, but bedside mixing strategies and the limited supply of the adjuvant component QS21 have made its application economically impracticable. With lipid nanoparticles (LNPs) that were approved by the FDA as vectors for severe acute respiratory syndrome coronavirus 2 vaccines, we designed a series of vaccines efficiently encapsulated with varicella-zoster virus glycoprotein E (VZV-gE) and nucleic acids including polyinosinic-polycytidylic acid (Poly I:C) and the natural phosphodiester CpG oligodeoxynucleotide (CpG ODN), which was approved by the FDA as an immunostimulator in a hepatitis B vaccine. Preclinical trial in mice showed that these LNP vaccines could induce VZV-gE IgG titers more than 16 times those induced by an alum adjuvant, and immunized serum could block in vitro infection completely at a dilution of 1:80, which indicated potential as a varicella vaccine. The magnitude of the cell-mediated immunity induced was generally more than 10 times that induced by the alum adjuvant, indicating potential as a zoster vaccine. These results showed that immunostimulatory nucleic acids together with LNPs have promise as safe and economical varicella and zoster vaccine candidates. Full article
Show Figures

Graphical abstract

18 pages, 2697 KiB  
Article
Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines
by Agnieszka Razim, Marcelina Pyclik, Katarzyna Pacyga, Sabina Górska, Jintao Xu, Michal A. Olszewski, Andrzej Gamian and Andrzej Myc
Vaccines 2021, 9(3), 234; https://doi.org/10.3390/vaccines9030234 - 8 Mar 2021
Cited by 5 | Viewed by 3559
Abstract
Many conventional vaccines are administered via a needle injection, while most pathogens primarily invade the host via mucosal surfaces. Moreover, protective IgA antibodies are insufficiently induced by parenteral vaccines. Mucosal immunity induces both local and systemic response to pathogens and typically lasts for [...] Read more.
Many conventional vaccines are administered via a needle injection, while most pathogens primarily invade the host via mucosal surfaces. Moreover, protective IgA antibodies are insufficiently induced by parenteral vaccines. Mucosal immunity induces both local and systemic response to pathogens and typically lasts for long periods of time. Therefore, vaccination via mucosal routes has been increasingly explored. However, mucosal vaccines require potent adjuvants to become efficacious. Despite many efforts to develop safe and robust adjuvants for mucosal vaccines, only a few have been approved for use in human formulations. The aim of our study was to design, develop and characterize new silicone oil-based nanoadjuvant candidates for intranasal vaccines with potential to become mucosal adjuvants. We have developed an array of nanoadjuvant candidates (NACs), based on well-defined ingredients. NAC1, 2 and 3 are based on silicone oil, but differ in the used detergents and organic solvents, which results in variations in their droplet size and zeta potential. NACs’ cytotoxicity, Tumor Necrosis Factor α (TNF-α) induction and their effect on antigen engulfment by immune cells were tested in vitro. Adjuvant properties of NACs were verified by intranasal vaccination of mice together with ovalbumin (OVA). NACs show remarkable stability and do not require any special storage conditions. They exhibit bio-adhesiveness and influence the degree of model protein engulfment by epithelial cells. Moreover, they induce high specific anti-OVA IgG antibody titers after two intranasal administrations. Nanoadjuvant candidates composed of silicone oil and cationic detergents are stable, exhibit remarkable adjuvant properties and can be used as adjuvants for intranasal immunization. Full article
Show Figures

Graphical abstract

13 pages, 2328 KiB  
Article
Novel Inactivated Subtype B Avian Metapneumovirus Vaccine Induced Humoral and Cellular Immune Responses
by Yuanling Bao, Mengmeng Yu, Peng Liu, Fujun Hou, Farooque Muhammad, Zhihao Wang, Xinyi Li, Zhuo Zhang, Suyan Wang, Yuntong Chen, Hongyu Cui, Aijing Liu, Xiaole Qi, Qing Pan, Yanping Zhang, Li Gao, Kai Li, Changjun Liu, Xijun He, Xiaomei Wang and Yulong Gaoadd Show full author list remove Hide full author list
Vaccines 2020, 8(4), 762; https://doi.org/10.3390/vaccines8040762 - 14 Dec 2020
Cited by 6 | Viewed by 3012
Abstract
Avian metapneumovirus (aMPV), a highly contagious agent, is widespread and causes acute upper respiratory tract disease in chickens and turkeys. However, currently, there is no vaccine licensed in China. Herein, we describe the development of an inactivated aMPV/B vaccine using the aMPV/B strain [...] Read more.
Avian metapneumovirus (aMPV), a highly contagious agent, is widespread and causes acute upper respiratory tract disease in chickens and turkeys. However, currently, there is no vaccine licensed in China. Herein, we describe the development of an inactivated aMPV/B vaccine using the aMPV/B strain LN16. Combined with a novel adjuvant containing immune-stimulating complexes (ISCOMs), the novel vaccine could induce high virus-specific and VN antibodies. In addition, it activated B and T lymphocytes and promoted the expression of IL-4 and IFN-γ. Importantly, boosting vaccination with the inactivated aMPV/B vaccine could provide 100% protection against aMPV/B infection with reduced virus shedding and turbinate inflammation. The protection efficacy could last for at least 6 months. This study yielded a novel inactivated aMPV/B vaccine that could serve as the first vaccine candidate in China, thus contributing to the control of aMPV/B and promoting the development of the poultry industry. Full article
Show Figures

Figure 1

17 pages, 5155 KiB  
Article
Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine
by Lu Lu, Carol Ho-Yan Fong, Anna Jinxia Zhang, Wai-Lan Wu, Iris Can Li, Andrew Chak-Yiu Lee, Thrimendra Kaushika Dissanayake, Linlei Chen, Ivan Fan-Ngai Hung, Kwok-Hung Chan, Hin Chu, Kin-Hang Kok, Kwok-Yung Yuen and Kelvin Kai-Wang To
Vaccines 2020, 8(4), 754; https://doi.org/10.3390/vaccines8040754 - 11 Dec 2020
Cited by 7 | Viewed by 3610
Abstract
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose [...] Read more.
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19. Full article
Show Figures

Figure 1

10 pages, 1231 KiB  
Article
Combination of Innate Immune Modulators as Vaccine Adjuvants in Mice
by Azita Haddadi, Alyssa Chaffey, Siew Hon Ng, Damayanthi Yalamati and Heather L. Wilson
Vaccines 2020, 8(4), 569; https://doi.org/10.3390/vaccines8040569 - 1 Oct 2020
Cited by 6 | Viewed by 3232
Abstract
The development of new, effective, and safe vaccines necessarily requires the identification of new adjuvant(s) to enhance the potency and longevity of antigen-specific immune responses. In the present study, we compare the antibody-mediated and cell-mediated immune (CMI) responses within groups of mice vaccinated [...] Read more.
The development of new, effective, and safe vaccines necessarily requires the identification of new adjuvant(s) to enhance the potency and longevity of antigen-specific immune responses. In the present study, we compare the antibody-mediated and cell-mediated immune (CMI) responses within groups of mice vaccinated subcutaneously with ovalbumin (OVA; as an experimental antigen) plus polyphosphazene (an innate immune modulator), Polyinosinic:polycytidylic acid (poly-I:C; (an RNA mimetic) and glycopeptide ARC5 (which is a Toll-like receptor (TLR), TLR2 ligand and PAM3CSK4 analogue) formulated together in a soluble vaccine. We also investigated the effect of a polymeric nanoparticle of ARC4 and ARC7 (which are a novel muramyl dipeptide analogue and a monophosophoryl lipid A (MPLA) analogue, respectively) plus OVA +/− ARC5 as a subcutaneous vaccine in mice. OVA+ARC4/ARC7 nanoparticle +/− ARC5 triggered a robust and balanced Th1/Th2-type humoral response with significant anti-OVA IgA in serum, and significant interferon (IFN)-γ and interleukin (IL)-17 production in splenocytes after 35 days relative to the controls. Formulation of OVA with ARC4/ARC7 nanoparticles should be investigated for inducing protective immunity against infectious pathogens in mice and other species. Full article
Show Figures

Figure 1

12 pages, 1003 KiB  
Article
Adjuvant Activity of Synthetic Lipid A of Alcaligenes, a Gut-Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-Specific IgG and Th17 Responses in Systemic Vaccine
by Yunru Wang, Koji Hosomi, Atsushi Shimoyama, Ken Yoshii, Haruki Yamaura, Takahiro Nagatake, Tomomi Nishino, Hiroshi Kiyono, Koichi Fukase and Jun Kunisawa
Vaccines 2020, 8(3), 395; https://doi.org/10.3390/vaccines8030395 - 20 Jul 2020
Cited by 20 | Viewed by 3888
Abstract
Alcaligenes spp. are identified as commensal bacteria and have been found to inhabit Peyer’s patches in the gut. We previously reported that Alcaligenes-derived lipopolysaccharides (LPS) exerted adjuvant activity in systemic vaccination, without excessive inflammation. Lipid A is one of the components responsible [...] Read more.
Alcaligenes spp. are identified as commensal bacteria and have been found to inhabit Peyer’s patches in the gut. We previously reported that Alcaligenes-derived lipopolysaccharides (LPS) exerted adjuvant activity in systemic vaccination, without excessive inflammation. Lipid A is one of the components responsible for the biological effect of LPS and has previously been applied as an adjuvant. Here, we examined the adjuvant activity and safety of chemically synthesized Alcaligenes lipid A. We found that levels of OVA-specific serum IgG antibodies increased in mice that were subcutaneously immunized with ovalbumin (OVA) plus Alcaligenes lipid A relative to those that were immunized with OVA alone. In addition, Alcaligenes lipid A promoted antigen-specific T helper 17 (Th17) responses in the spleen; upregulated the expression of MHC class II, CD40, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs); enhanced the production of Th17-inducing cytokines IL-6 and IL-23 from BMDCs. Stimulation with Alcaligenes lipid A also induced the production of IL-6 and IL-1β in human peripheral blood mononuclear cells. Moreover, Alcaligenes lipid A caused minor side effects, such as lymphopenia and thrombocytopenia. These findings suggest that Alcaligenes lipid A is a safe and effective Th17-type adjuvant by directly stimulating dendritic cells in systemic vaccination. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

51 pages, 4230 KiB  
Review
Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation
by Leonor S. Castro, Guilherme S. Lobo, Patrícia Pereira, Mara G. Freire, Márcia C. Neves and Augusto Q. Pedro
Vaccines 2021, 9(4), 328; https://doi.org/10.3390/vaccines9040328 - 1 Apr 2021
Cited by 20 | Viewed by 11492
Abstract
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily [...] Read more.
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons. Full article
Show Figures

Figure 1

18 pages, 2296 KiB  
Review
Natural and Synthetic Saponins as Vaccine Adjuvants
by Pengfei Wang
Vaccines 2021, 9(3), 222; https://doi.org/10.3390/vaccines9030222 - 5 Mar 2021
Cited by 73 | Viewed by 9990
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating [...] Read more.
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies. Full article
Show Figures

Figure 1

13 pages, 260 KiB  
Review
Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases
by Kezia R. Fourie and Heather L. Wilson
Vaccines 2020, 8(4), 773; https://doi.org/10.3390/vaccines8040773 - 17 Dec 2020
Cited by 47 | Viewed by 4296
Abstract
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for [...] Read more.
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics. Full article
19 pages, 1109 KiB  
Review
The Age of Cyclic Dinucleotide Vaccine Adjuvants
by Himanshu Gogoi, Samira Mansouri and Lei Jin
Vaccines 2020, 8(3), 453; https://doi.org/10.3390/vaccines8030453 - 13 Aug 2020
Cited by 63 | Viewed by 6093
Abstract
As prophylactic vaccine adjuvants for infectious diseases, cyclic dinucleotides (CDNs) induce safe, potent, long-lasting humoral and cellular memory responses in the systemic and mucosal compartments. As therapeutic cancer vaccine adjuvants, CDNs induce potent anti-tumor immunity, including cytotoxic T cells and NK cells activation [...] Read more.
As prophylactic vaccine adjuvants for infectious diseases, cyclic dinucleotides (CDNs) induce safe, potent, long-lasting humoral and cellular memory responses in the systemic and mucosal compartments. As therapeutic cancer vaccine adjuvants, CDNs induce potent anti-tumor immunity, including cytotoxic T cells and NK cells activation that achieve durable regression in multiple mouse models of tumors. Clinical trials are ongoing to fulfill the promise of CDNs (ClinicalTrials.gov: NCT02675439, NCT03010176, NCT03172936, and NCT03937141). However, in October 2018, the first clinical data with Merck’s CDN MK-1454 showed zero activity as a monotherapy in patients with solid tumors or lymphomas (NCT03010176). Lately, the clinical trial from Aduro’s CDN ADU-S100 monotherapy was also disappointing (NCT03172936). The emerging hurdle in CDN vaccine development calls for a timely re-evaluation of our understanding on CDN vaccine adjuvants. Here, we review the status of CDN vaccine adjuvant research, including their superior adjuvant activities, in vivo mode of action, and confounding factors that affect their efficacy in humans. Lastly, we discuss the strategies to overcome the hurdle and advance promising CDN adjuvants in humans. Full article
Show Figures

Figure 1

Back to TopTop