Herpesvirus Latency 2024

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 2342

Special Issue Editor

1. Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
2. Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
Interests: herpesvirus; latency; reactivation; virus-host interaction; latency associated transcripts

Special Issue Information

Dear Colleagues,

The Herpesvirales order contains the Alloherpesviridae, Orthoherpesviridae, and Malacoherpesviridae families. Fish and amphibian herpesviruses belong to the Alloherpesviridae family; avian, mammalian, and reptilian herpesviruses belong to the Orthoherpesviridae family; and molluscan herpesviruses belong to the Malacoherpesviridae family. One unique feature known to many Orthoherpesviridae members is latency and reactivation. Latent infection has recently been reported in Alloherpesviridae and Malacoherpesviridae viruses. Reactivation from latency is critical for virus transmission. Although latency-reactivation mechanisms have been studied in many members within the Orthoherpsviridae, the mechanisms of herpesvirus reactivation are still poorly understood for many herpes viruses. This Special Issue calls for studies on the mechanism of herpesvirus latency and reactivation, the role of innate immune responses, and the role of stress in virus reactivation from latency.

Dr. Ling Jin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • herpesvirus
  • latency
  • reactivation
  • persistency
  • innate immune response
  • stress
  • heat stress

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1425 KiB  
Article
Sequence Analysis of microRNAs Encoded by Simian Lymphocryptoviruses
by Yan Chen, Devin N. Fachko, Helen L. Wu, Jonah B. Sacha and Rebecca L. Skalsky
Viruses 2024, 16(12), 1923; https://doi.org/10.3390/v16121923 - 16 Dec 2024
Viewed by 434
Abstract
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) [...] Read more.
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque (Macaca fascicularis) with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon (Papio hamadryas) LCL that harbors CeHV12. Via sequence comparisons, we further predicted viral miRNAs encoded by LCVs that infect two additional NHP species: stump-tailed macaques (Macaca arctoides) and bonobos (Pan paniscus). Together, these species represent two arms of the primate phylogeny: Hominoids (Pan) and Old-World monkeys (Macaca, Papio). Through our analysis, we defined sequences for >95 viral miRNAs encoded by these four NHP LCVs. Our study provides the most comprehensive annotation of NHP LCV miRNAs to date, yielding a resource for developing sequence-specific reagents to detect these molecules. Importantly, we further demonstrate that cyLCV miRNAs can be detected in circulation in vivo and have biomarker potential for LCV-related PTLD. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1850 KiB  
Review
Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency
by Fouad El-Mayet and Clinton Jones
Viruses 2024, 16(11), 1675; https://doi.org/10.3390/v16111675 - 27 Oct 2024
Viewed by 1281
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites [...] Read more.
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two  pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral  heterochromatin, remodel chromatin, and activate gene expression. Thus, we
predict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

Back to TopTop