The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Inclusion Criteria
- AI-based devices, either independent or incorporated into a workflow, used for imaging diagnosis and/or detection of findings in lung tissue, regardless of thoracic imaging modality;and
- an observer test where radiologists or other types of physicians used the AI-algorithm as either a concurrent or a second reader;and
- within the observer test, the specific observer that diagnosed/detected the findings without AI-assistance must also participate as the observer with AI-assistance;and
- outcome measurements of observer tests included either sensitivity, specificity, AUC, accuracy, or some form of time measurement recording observers’ reading time without and with AI-assistance.
3. Results
3.1. Studies Where Human Observers Used AI-Based Devices as Concurrent Readers
3.1.1. Detection of Pneumonia
Detection of Pulmonary Nodules
Detection of Several Different Findings and Tuberculosis
3.2. Studies Where Human Observers Used AI-Based Devices as a Second Reader in a Sequential Observer Test Design
3.2.1. Detection of Pulmonary Nodules Using CT
3.2.2. Detection of Pulmonary Nodules Using Chest X-ray
3.2.3. Detection of Several Different Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Suehling, M.; Flohr, T.; Comaniciu, D. Artificial Intelligence in Diagnostic Imaging: Status Quo, Challenges, and Future Opportunities. J. Thorac. Imaging 2020, 35, S11–S16. [Google Scholar] [CrossRef]
- Aidoc. Available online: https://www.aidoc.com/ (accessed on 11 November 2021).
- Mu, W.; Jiang, L.; Zhang, J.; Shi, Y.; Gray, J.E.; Tunali, I.; Gao, C.; Sun, Y.; Tian, J.; Zhao, X.; et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat. Commun. 2020, 11, 5228. [Google Scholar] [CrossRef]
- Trebeschi, S.; Bodalal, Z.; Boellaard, T.N.; Bucho, T.M.T.; Drago, S.G.; Kurilova, I.; Calin-Vainak, A.M.; Pizzi, A.D.; Muller, M.; Hummelink, K.; et al. Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Willemink, M.J.; Koszek, W.A.; Hardell, C.; Wu, J.; Fleischmann, D.; Harvey, H.; Folio, L.R.; Summers, R.M.; Rubin, D.L.; Lungren, M.P. Preparing Medical Imaging Data for Machine Learning. Radiology 2020, 295, 4–15. [Google Scholar] [CrossRef]
- Laino, M.E.; Ammirabile, A.; Posa, A.; Cancian, P.; Shalaby, S.; Savevski, V.; Neri, E. The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics 2021, 11, 1317. [Google Scholar] [CrossRef]
- Pehrson, L.M.; Nielsen, M.B.; Lauridsen, C. Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review. Diagnostics 2019, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Vilmun, B.M.; Carlsen, J.F.; Albrecht-Beste, E.; Lauridsen, C.; Nielsen, M.B.; Hansen, K.L. The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review. Diagnostics 2019, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strohm, L.; Hehakaya, C.; Ranschaert, E.R.; Boon, W.P.C.; Moors, E.H.M. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur. Radiol. 2020, 30, 5525–5532. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.F.; Metz, C.E.; Campbell, G. Assessment of Medical Imaging Systems and Computer Aids: A Tutorial Review. Acad. Radiol. 2007, 14, 723–748. [Google Scholar] [CrossRef] [PubMed]
- Gur, D. Objectively Measuring and Comparing Performance Levels of Diagnostic Imaging Systems and Practices. Acad. Radiol. 2007, 14, 641–642. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.X.; Wang, R.; Xiong, Z.; Hsieh, B.; Chang, K.; Halsey, K.; Tran, T.M.L.; Choi, J.W.; Wang, D.-C.; Shi, L.-B.; et al. Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology 2021, 299, E225. [Google Scholar] [CrossRef] [PubMed]
- Dorr, F.; Chaves, H.; Serra, M.M.; Ramirez, A.; Costa, M.E.; Seia, J.; Cejas, C.; Castro, M.; Eyheremendy, E.; Slezak, D.F.; et al. COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence. Intell. Med. 2020, 3-4, 100014. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.Y.; Kim, G.H.; Kang, D.; Kim, I.J.; Seo, J.; Andrews, J.R.; Park, C.M. Clinical Validation of a Deep Learning Algorithm for Detection of Pneumonia on Chest Radiographs in Emergency Department Patients with Acute Febrile Respiratory Illness. J. Clin. Med. 2020, 9, 1981. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-Y.; Tsai, Y.-S.; Chen, P.-L.; Tsai, H.-P.; Hsu, L.-W.; Wang, C.-S.; Lee, N.-Y.; Huang, M.-S.; Wu, Y.-C.; Ko, W.-C.; et al. Application of an Artificial Intelligence Trilogy to Accelerate Processing of Suspected Patients With SARS-CoV-2 at a Smart Quarantine Station: Observational Study. J. Med. Internet Res. 2020, 22, e19878. [Google Scholar] [CrossRef]
- Yang, Y.; Lure, F.Y.; Miao, H.; Zhang, Z.; Jaeger, S.; Liu, J.; Guo, L. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections. J. X-ray Sci. Technol. 2021, 29, 1–17. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Shao, M.; Sun, Y.; Lian, Q.; Zhang, H. The value of artificial intelligence and imaging diagnosis in the fight against COVID-19. Pers. Ubiquitous Comput. 2021, 1–10. [Google Scholar] [CrossRef]
- Beyer, F.; Zierott, L.; Fallenberg, E.M.; Juergens, K.U.; Stoeckel, J.; Heindel, W.; Wormanns, D. Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur. Radiol. 2007, 17, 2941–2947. [Google Scholar] [CrossRef]
- De Hoop, B.; de Boo, D.W.; Gietema, H.A.; van Hoorn, F.; Mearadji, B.; Schijf, L.; van Ginneken, B.; Prokop, M.; Schaefer-Prokop, C. Computer-aided Detection of Lung Cancer on Chest Radiographs: Effect on Observer Performance. Radiology 2010, 257, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, Y.H.; Shin, K.E.; Park, J.S.; Lee, J.W.; Byun, S.; Lee, H. Extravalidation and reproducibility results of a commercial deep learning-based automatic detection algorithm for pulmonary nodules on chest radiographs at tertiary hospital. J. Med. Imaging Radiat. Oncol. 2020, 65, 15–22. [Google Scholar] [CrossRef]
- Kozuka, T.; Matsukubo, Y.; Kadoba, T.; Oda, T.; Suzuki, A.; Hyodo, T.; Im, S.; Kaida, H.; Yagyu, Y.; Tsurusaki, M.; et al. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Jpn. J. Radiol. 2020, 38, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Goo, J.M.; Park, C.M.; Lee, H.J.; Jin, K.N. Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers’ Performance. Korean J. Radiol. 2012, 13, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hara, T.; Shiraishi, J.; Engelmann, R.; MacMahon, H.; Doi, K. Improved Detection of Subtle Lung Nodules by Use of Chest Radiographs with Bone Suppression Imaging: Receiver Operating Characteristic Analysis With and Without Localization. Am. J. Roentgenol. 2011, 196, W535–W541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Engelmann, R.; Pesce, L.L.; Doi, K.; Metz, C.E.; MacMahon, H. Small lung cancers: Improved detection by use of bone suppression imaging-comparison with dual-energy subtraction chest radiography. Radiology 2011, 261, 937–949. [Google Scholar] [CrossRef]
- Liu, K.; Li, Q.; Ma, J.; Zhou, Z.; Sun, M.; Deng, Y.; Tu, W.; Wang, Y.; Fan, L.; Xia, C.; et al. Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance. Radiol. Artif. Intell. 2019, 1, e180084. [Google Scholar] [CrossRef]
- Martini, K.; Blüthgen, C.; Eberhard, M.; Schönenberger, A.L.N.; De Martini, I.; Huber, F.A.; Barth, B.K.; Euler, A.; Frauenfelder, T. Impact of Vessel Suppressed-CT on Diagnostic Accuracy in Detection of Pulmonary Metastasis and Reading Time. Acad. Radiol. 2020, 28, 988–994. [Google Scholar] [CrossRef]
- Singh, R.; Kalra, M.K.; Homayounieh, F.; Nitiwarangkul, C.; McDermott, S.; Little, B.P.; Lennes, I.T.; Shepard, J.-A.O.; Digumarthy, S.R. Artificial intelligence-based vessel suppression for detection of sub-solid nodules in lung cancer screening computed tomography. Quant. Imaging Med. Surg. 2021, 11, 1134–1143. [Google Scholar] [CrossRef]
- Nam, J.G.; Kim, M.; Park, J.; Hwang, E.J.; Lee, J.H.; Hong, J.H.; Goo, J.M.; Park, C.M. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur. Respir. J. 2020, 57, 2003061. [Google Scholar] [CrossRef]
- Sung, J.; Park, S.; Lee, S.M.; Bae, W.; Park, B.; Jung, E.; Seo, J.B.; Jung, K.-H. Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study. Radiology 2021, 299, 450–459. [Google Scholar] [CrossRef]
- Rajpurkar, P.; O’Connell, C.; Schechter, A.; Asnani, N.; Li, J.; Kiani, A.; Ball, R.L.; Mendelson, M.; Maartens, G.; Van Hoving, D.J.; et al. CheXaid: Deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. NPJ Digit. Med. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Awai, K.; Murao, K.; Ozawa, A.; Nakayama, Y.; Nakaura, T.; Liu, D.; Kawanaka, K.; Funama, Y.; Morishita, S.; Yamashita, Y. Pulmonary Nodules: Estimation of Malignancy at Thin-Section Helical CT—Effect of Computer-aided Diagnosis on Performance of Radiologists. Radiology 2006, 239, 276–284. [Google Scholar] [CrossRef]
- Awai, K.; Murao, K.; Ozawa, A.; Komi, M.; Hayakawa, H.; Hori, S.; Nishimura, Y. Pulmonary Nodules at Chest CT: Effect of Computer-aided Diagnosis on Radiologists’ Detection Performance. Radiology 2004, 230, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Bogoni, L.; Ko, J.P.; Alpert, J.; Anand, V.; Fantauzzi, J.; Florin, C.H.; Koo, C.W.; Mason, D.; Rom, W.; Shiau, M.; et al. Impact of a Computer-Aided Detection (CAD) System Integrated into a Picture Archiving and Communication System (PACS) on Reader Sensitivity and Efficiency for the Detection of Lung Nodules in Thoracic CT Exams. J. Digit. Imaging 2012, 25, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, K.J.; Jin, G.Y.; Ko, S.B.; Wang, Y.; Zhang, H.; Choi, E.J.; Choi, H. Deep Learning for the Classification of Small (≤2 cm) Pulmonary Nodules on CT Imaging: A Preliminary Study. Acad. Radiol. 2020, 27, e55–e63. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, X.-H.; Ma, D.-Q.; Ma, B.-R. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chin. Med. J. 2007, 120, 1211–1215. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Han, X.; Ji, H.; Liu, L.; He, W. Estimation of malignancy of pulmonary nodules at CT scans: Effect of computer-aided diagnosis on diagnostic performance of radiologists. Asia-Pacific J. Clin. Oncol. 2020, 17, 216–221. [Google Scholar] [CrossRef]
- Matsuki, Y.; Nakamura, K.; Watanabe, H.; Aoki, T.; Nakata, H.; Katsuragawa, S.; Doi, K. Usefulness of an Artificial Neural Network for Differentiating Benign from Malignant Pulmonary Nodules on High-Resolution CT. Am. J. Roentgenol. 2002, 178, 657–663. [Google Scholar] [CrossRef]
- Rao, R.B.; Bi, J.; Fung, G.; Salganicoff, M.; Obuchowski, N.; Naidich, D. LungCAD: A clinically approved, machine learning system for lung cancer detection. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 1033–1037. [Google Scholar]
- Kasai, S.; Li, F.; Shiraishi, J.; Doi, K. Usefulness of Computer-Aided Diagnosis Schemes for Vertebral Fractures and Lung Nodules on Chest Radiographs. Am. J. Roentgenol. 2008, 191, 260–265. [Google Scholar] [CrossRef]
- Kakeda, S.; Moriya, J.; Sato, H.; Aoki, T.; Watanabe, H.; Nakata, H.; Oda, N.; Katsuragawa, S.; Yamamoto, K.; Doi, K. Improved Detection of Lung Nodules on Chest Radiographs Using a Commercial Computer-Aided Diagnosis System. Am. J. Roentgenol. 2004, 182, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Kligerman, S.; Cai, L.; White, C.S. The Effect of Computer-aided Detection on Radiologist Performance in the Detection of Lung Cancers Previously Missed on a Chest Radiograph. J. Thorac. Imaging 2013, 28, 244–252. [Google Scholar] [CrossRef]
- Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology 2019, 290, 218–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, S.; Awai, K.; Suzuki, K.; Yanaga, Y.; Funama, Y.; MacMahon, H.; Yamashita, Y. Performance of Radiologists in Detection of Small Pulmonary Nodules on Chest Radiographs: Effect of Rib Suppression With a Massive-Training Artificial Neural Network. Am. J. Roentgenol. 2009, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalekamp, S.; van Ginneken, B.; Koedam, E.; Snoeren, M.M.; Tiehuis, A.M.; Wittenberg, R.; Karssemeijer, N.; Schaefer-Prokop, C.M. Computer-aided Detection Improves Detection of Pulmonary Nodules in Chest Radiographs beyond the Support by Bone-suppressed Images. Radiology 2014, 272, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.; Chung, M.J.; Kotter, E.; Yune, S.; Kim, M.; Do, S.; Han, K.; Kim, H.; Yang, S.; Lee, D.-J.; et al. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Radiology 2020, 294, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Ashizawa, K.; Li, F.; Matsuyama, N.; Fukushima, A.; Shiraishi, J.; MacMahon, H.; Doi, K. Artificial neural networks (ANNs) for differential diagnosis of interstitial lung disease: Results of a simulation test with actual clinical cases. Acad. Radiol. 2004, 11, 29–37. [Google Scholar] [CrossRef]
- Abe, H.; MacMahon, H.; Engelmann, R.; Li, Q.; Shiraishi, J.; Katsuragawa, S.; Aoyama, M.; Ishida, T.; Ashizawa, K.; Metz, C.E.; et al. Computer-aided Diagnosis in Chest Radiography: Results of Large-Scale Observer Tests at the 1996–2001 RSNA Scientific Assemblies. RadioGraphics 2003, 23, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, A.; Ashizawa, K.; Yamaguchi, T.; Matsuyama, N.; Hayashi, H.; Kida, I.; Imafuku, Y.; Egawa, A.; Kimura, S.; Nagaoki, K.; et al. Application of an Artificial Neural Network to High-Resolution CT: Usefulness in Differential Diagnosis of Diffuse Lung Disease. Am. J. Roentgenol. 2004, 183, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, E.J.; Park, S.; Jin, K.-N.; Kim, J.I.; Choi, S.Y.; Lee, J.H.; Goo, J.M.; Aum, J.; Yim, J.-J.; Cohen, J.G.; et al. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Netw. Open 2019, 2, e191095. [Google Scholar] [CrossRef] [Green Version]
- Gaube, S.; Suresh, H.; Raue, M.; Merritt, A.; Berkowitz, S.J.; Lermer, E.; Coughlin, J.F.; Guttag, J.V.; Colak, E.; Ghassemi, M. Do as AI say: Susceptibility in deployment of clinical decision-aids. Npj Digit. Med. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Brice, J. To Err is Human; Analysis Finds Radiologists Very Human. Available online: https://www.diagnosticimaging.com/view/err-human-analysis-finds-radiologists-very-human (accessed on 1 October 2021).
- Kobayashi, T.; Xu, X.W.; MacMahon, H.; E Metz, C.; Doi, K. Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 1996, 199, 843–848. [Google Scholar] [CrossRef]
- Petrick, N.; Haider, M.; Summers, R.M.; Yeshwant, S.C.; Brown, L.; Iuliano, E.M.; Louie, A.; Choi, J.R.; Pickhardt, P.J. CT Colonography with Computer-aided Detection as a Second Reader: Observer Performance Study. Radiology 2008, 246, 148–156. [Google Scholar] [CrossRef]
- Mazumdar, M.; Liu, A. Group sequential design for comparative diagnostic accuracy studies. Stat. Med. 2003, 22, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.E.; Paik, D.; Olsen, D.; Liu, E.G.; Chow, L.C.; Leung, A.N.; Mindelzun, R.; Choudhury, K.R.; Naidich, D.; Napel, S.; et al. Computer-aided detection (CAD) of lung nodules in CT scans: Radiologist performance and reading time with incremental CAD assistance. Eur. Radiol. 2009, 20, 549–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunderman, R.B. Biases in Radiologic Reasoning. Am. J. Roentgenol. 2009, 192, 561–564. [Google Scholar] [CrossRef]
- Busby, L.P.; Courtier, J.L.; Glastonbury, C.M. Bias in Radiology: The How and Why of Misses and Misinterpretations. RadioGraphics 2018, 38, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Liu, X.; Berzin, T.M.; Brown, J.R.G.; Liu, P.; Zhou, C.; Lei, L.; Li, L.; Guo, Z.; Lei, S.; et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): A double-blind randomised study. Lancet Gastroenterol. Hepatol. 2020, 5, 343–351. [Google Scholar] [CrossRef]
- Lin, H.; Li, R.; Liu, Z.; Chen, J.; Yang, Y.; Chen, H.; Lin, Z.; Lai, W.; Long, E.; Wu, X.; et al. Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized Controlled Trial. EClinicalMedicine 2019, 9, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.; Komorowski, M.; Harvey, H.; Topol, E.J.; A Ioannidis, J.P.; Collins, G.; Maruthappu, M. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020, 368, m689. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Standard of Reference | Type of Artificial Intelligence-Based CAD | Pathology | No. of Cases | Test Observers | Image Modality |
a | |||||||
Bai et al. [13] | 2021 | RT-PCR | EfficientNet-B3 Convolutional Neural Network | COVID-19 pneumonia | 119 | 6 radiologists (10–20 years of chest CT experience) | CT |
Beyer et al. [19] | 2007 | Radiologist identified and consensus vote | Commercially available (LungCAD prototype version, Siemens Corporate Research, Malvern, PA, USA) | Pulmonary nodules | 50 | 4 radiologists (2–11 years experience) | CT |
de Hoop et al. [20] | 2010 | Histologically confirmed | Commercially available (OnGuard 5.0; Riverain Medical, Miamisburg, OH, USA) | Pulmonary nodules | 111 | 1 general radiologist, 1 chest radiologist, and 4 residents | Chest X-ray |
Dorr et al. [14] | 2020 | RT-PCR | DenseNet 121 architecture | COVID-19 pneumonia | 60 | 23 radiologists and 31 emergency care physicians | Chest X-ray |
Kim et al. [15] | 2020 | Bacterial culture and RT-PCR for viruses | Commercially available (Lunit INSIGHT for chest radiography, version 4.7.2; Lunit, Seoul, South Korea) | Pneumonia | 387 | 3 emergency department physicians (6–7 years experience) | Chest X-ray |
Koo et al. [21] | 2020 | Pathologically confirmed | Commercially available (Lunit Insight CXR, ver. 1.00; Lunit, Seoul, South Korea) | Pulmonary nodules | 434 | 2 thoracic radiologists and 2 residents | Chest X-ray |
Kozuka et al. [22] | 2020 | Radiologist identified and majority vote | Faster Region-Convolutional Neural Network | Pulmonary nodules | 120 | 2 radiologists (1–4 years experience) | CT |
Lee et al. [23] | 2012 | Pathologically confirmed | Commercially available (IQQA-Chest, EDDA Technology, Princeton Junction, NJ, USA) | Pulmonary nodules malignant/benign | 200 | 5 chest radiologists and 5 residents | Chest X-ray |
Li et al. [24] | 2011 | CT | Commercially available (SoftView, version 2.0; Riverrain Medical, Miamisburg, OH, USA-Image normalization, feature extraction and regression networks) | Pulmonary nodules | 151 | 3 radiologists (10–25 years experience) | Chest X-ray |
Li et al. [25] | 2011 | Pathologically confirmed and radiology assessed | Commercially available (SoftView, version 2.0; Riverain Medical) | Pulmonary nodules | 80 | 2 chest radiologists, 4 general radiologists, and 4 residents | Chest X-ray |
Liu et al. [16] | 2020 | - | Segmentation model with class attention map including a residual convolutional block | COVID-19 pneumonia | 643 | - | Chest X-ray |
Liu et al. [26] | 2019 | Radiologist identified and majority vote | DenseNet and Faster Region-Convolutional Neural Network | Pulmonary nodule | 271 | 2 radiologists (10 years experience) | CT |
Martini et al. [27] | 2021 | Radiologist consensus | Commercially available (ClearRead-CT, Riverrain Technologies, Miamisburg, OH, USA) | Pulmonary consolidations/nodules | 100 | 2 senior radiologists, 2 final-year residents, and 2 inexperienced residents | MDCT |
Nam et al. [29] | 2021 | RT-PCR and CT | Deep learning-based algorithm (Deep convolutional neural network) | Pneumonia, pulmonary edema, active tuberculosis, interstitial lung disease, nodule/mass, pleural effusion, acute aortic syndrome, pneumoperitoneum, rib fracture, pneumothorax, mediastinal mass. | 202 | 2 thoracic radiologists, 2 board-certified radiologists, and 2 residents | Chest X-ray |
Rajpurkar et al. [31] | 2020 | Positive culture or Xpert MTB/RIF test | Convolutional Neural Network | Tuberculosis | 114 | 13 physicians (6 months–25 years of experience) | Chest X-ray |
Singh et al. [28] | 2021 | Radiologically reviewed | Commercially available (ClearRead CT Vessel Suppression and Detect, Riverain Technologies TM) | Subsolid nodules (Incl ground-glass and/or part-solid) | 123 | 2 radiologists (5–10 years experience) | CT |
Sung et al. [30] | 2021 | CT and clinical information | Commercially available (Med-Chest X-ray system (version 1.0.0, VUNO, Seoul, South Korea) | Nodules, consolidation, interstitial opacity, pleural effusion, pneumothorax | 128 | 2 thoracic radiologists, 2 board-certified radiologists, 1 radiology resident, and 1 non-radiology resident | Chest X-ray |
Yang et al. [17] | 2021 | RT-PCR | Deep Neural Network | COVID-19 pneumonia | 60 | 3 radiologists (5–20 years experience) | CT |
Zhang et al. [18] | 2021 | RT-PCR | Deep Neural Network using the blur processing method to improve the image enhancement algorithm | COVID-19 pneumonia | 15 | 2 physicians (13–15 years experience) | CT |
Author | Year | Standard of Reference | Type of Artificial Intelligence-Based CAD | Pathology | No. of Cases | Test Observers | Image Modality |
b | |||||||
Abe et al. [47] | 2004 | Radiological review and clinical correlation | Single three-layer, feed-forward Artificial Neural Network with a back-propagation algorithm | Sarcoidosis, miliary tuberculosis, lymphangitic carcinomatosis, interstitial pulmonary edema, silicosis, scleroderma, P. Carinii pneumonia, Langerhals cell histiocytosis, idiopathic pulmonary fibrosis, viral pneumonia, pulmonary drug toxicity | 30 | 5 radiologists (6–18 years experience) | Chest X-ray |
Abe et al. [48] | 2003 | Radiology consensus | Fourier transformation and Artificial Neural Network | Detection of interstitial lung disease | 20 | 8 chest radiologists, 13 other radiologists, and 7 residents | Chest X-ray |
Clinical correlation and bacteriological | Artificial Neural Network | Differential diagnosis of 11 types of interstitial lung disease | 28 | 16 chest radiologists, 25 other radiologists, and 12 residents | Chest X-ray | ||
Pathology | Artificial Neural Network | Distinction between malignant and benign pulmonary nodules | 40 | 7 chest radiologists, 14 other radiologists, and 7 residents | Chest X-ray | ||
Awai et al. [33] | 2004 | Radiological review | Artificial Neural Network | Pulmonary nodules | 50 | 5 board-certified radiologists and 5 residents | CT |
Awai et al. [32] | 2006 | Histology | Neural Network | Pulmonary nodules malignant/benign | 33 | 10 board-certified radiologists and 9 radiology residents | CT |
Beyer et al. [19] | 2007 | Radiologist identified and consensus vote | Commercially available (LungCAD prototype version, Siemens Corporate Research, Malvern, PA, USA) | Pulmonary nodules | 50 | 4 radiologists (2–11 years experience) | CT |
Bogoni et al. [34] | 2012 | Majority of agreement | Commercially available (Lung CAD VC20A, Siemens Healthcare, Malvern, PA, USA) | Pulmonary nodules | 43 | 5 fellowship-trained chest radiologists (1–10 years experience) | CT |
Chae et al. [35] | 2020 | Pathologically confirmed and radiologically reviewed | CT-lungNET (Deep Convolutional Neural Network) | Pulmonary nodules | 60 | 2 medical students, 2 residents, 2 non-radiology physicians, and 2 thoracic radiologists | CT |
Chen et al. [36] | 2007 | Surgery or biopsy | Deep Neural Network | Pulmonary nodules malignant/benign | 60 | 3 junior radiologists, 3 secondary radiologists, and 3 senior radiologists | CT |
Fukushima et al. [49] | 2004 | Pathological, bacteriological and clinical correlation | Single three-layer, feed-forward Artificial Neural Network with a back-propagation algorithm | Sarcoidose, diffuse panbronchioloitis, nonspecific interstitial pneumonia, lymphangitic carcinomatosis, usual interstitial pneumonia, silicosis, BOOP or chronic eopsinophilic pneumonia, pulmonary alveolar proteinosis, miliary tuberculosis, lymphangiomyomatosis, P, carinii pneumonia or cytomegalovirus pneumonia | 130 | 4 chest radiologists and 4 general radiologists | High Resolution CT |
Hwang et al. [50] | 2019 | Pathology, clinical or radiological | Deep Convolutional Neural Network with dense blocks | 4 different target diseases (pulmonary malignant neoplasms, tuberculosis, pneumonia, pneumothorax) classified in to binary classification of normal/abnormal | 200 | 5 thoracic radiologists, board-certified radiologists, and 5 non-radiology physicians | Chest X-ray |
Kakeda et al. [41] | 2004 | CT | Commercially available (Trueda, Mitsubishi Space Software, Tokyo, Japan) | Pulmonary nodules | 90 | 4 board-certified radiologists and 4 residents | Chest X-ray |
Kasai et al. [40] | 2008 | CT | Three Artificial Neural Networks | Pulmonary nodules | 41 | 6 chest radiologists and 12 general radiologists | Lateral chest X-ray only |
Kligerman et al. [42] | 2013 | Histology and CT | Commercially available (OnGuard 5.1; Riverain Medical, Miamisburg, OH, USA) | Lung cancer | 81 | 11 board-certified general radiologists (1–24 years experience) | Chest X-ray |
Liu et al. [37] | 2021 | Histology, CT, and biopsy/surgical removal | Convolutional Neural Networks | Pulmonary nodules malignant/benign | 879 | 2 senior chest radiologists, 2 secondary chest radiologists, and 2 junior radiologists | CT |
Matsuki et al. [38] | 2001 | Pathology and radiology | Three-layer, feed-forward Artificial Neural Network with a back-propagation algorithm | Pulmonary nodules | 50 | 4 attending radiologists, 4 radiology fellows, 4 residents | High Resolution CT |
Nam et al. [43] | 2019 | Pathologically confirmed and radiologically reviewed | Deep Convolutional Neural Networks with 25 layers and 8 residual connections | Pulmonary nodules malignant/benign | 181 | 4 thoracic radiologists, 5 board-certified radiologists, 6 residents, and 3 non-radiology physicians | Chest X-ray |
Oda et al. [44] | 2009 | Histology, cytology, and CT | Massive training Artificial Neural Network | Pulmonary nodules | 60 | 7 board-certified radiologists and 5 residents | Chest X-ray |
Rao et al. [39] | 2007 | Consensus and majority vote | LungCAD | Pulmonary nodules | 196 | 17 board-certified radiologists | MDCT |
Schalekamp et al. [45] | 2014 | Radiologically reviewed, pathology and clinical correlation | Commercially available (ClearRead +Detect 5.2; Riverain Technologies and ClearRead Bone Suppression 2.4; Riverain Technologies) | Pulmonary nodules | 300 | 5 radiologists and 3 residents | Chest X-ray |
Sim et al. [46] | 2020 | Biopsy, surgery, CT, and pathology | Commercially available (ALND, version 1.00; Samsung Electronics, Suwon, South Korea) | Cancer nodules | 200 | 5 senior chest radiologists, 4 chest radiologists, and 3 residents | Chest X-ray |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Sensitivity (%) | Specificity (%) | Sensitivity (%) | Specificity (%) | |||
a | ||||||
Bai et al. [13] | 79 | 88 | 88 | 91 | ↑ | p < 0.001 |
Beyer et al. [19] | 56.5 | - | 61.6 | - | ↑ | p < 0.001 |
de Hoop et al. [20] | 56 * | - | 56 * | - | ↑ | - |
Dorr et al. [14] | 47 | 79 | 61 | 75 | ↑ | p < 0.007 |
Kim et al. [15] | 73.9 | 88.7 | 82.2 | 98.1 | ↑ | p < 0.014 |
Koo et al. [21] | 92.4 | 93.1 | 95.1 | 97.2 | ↑ | - |
Kozuka et al. [22] | 68 | 91.7 | 85.1 | 83.3 | ↑ | p < 0.01 ** |
Lee et al. [23] | 84 | - | 88 | - | ↑ | - |
Rajpurkar et al. [31] | 70 | 52 | 73 | 61 | ↑ | - |
Singh et al. [28] | 68 * | 77.5 * | 73 * | 74 * | ↑ | - |
Sung et al. [30] | 80.1 | 89.3 | 88.9 | 96.6 | ↑ | p < 0.01 |
Yang et al. [17] | 89.5 | - | 94.2 | - | ↑ | p < 0.05 |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Accuracy (%) | AUC | Accuracy (%) | AUC | |||
b | ||||||
Bai et al. [13] | 85 | - | 90 | - | ↑ | p < 0.001 |
Kim et al. [15] | - | 0.871 | - | 0.916 | ↑ | p = 0.002 |
Koo et al. [21] | - | 0.93 | - | 0.96 | ↑ | p < 0.0001 |
Li et al. [24] | - | 0.840 | - | 0.863 | ↑ | p = 0.01 |
Li et al. [25] | - | 0.807 | - | 0.867 | ↑ | p < 0.001 |
Liu et al. [26] | - | 0.66 * | - | 0.78 * | ↑ | - |
Nam et al. [29] | 66.3 * | - | 82.4 * | - | ↑ | p < 0.05 |
Rajpurkar et al. [31] | 60 | - | 65 | - | ↑ | p = 0.002 |
Singh et al. [28] | - | 0.73 * | - | 0.74 * | ↑ | Not statistically significant |
Sung et al. [30] | - | 0.93 | - | 0.98 | ↑ | p = 0.003 |
Yang et al. [17] | 94.1 | - | 95.1 | - | ↑ | p = 0.01 |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Time | Time | |||||
c | ||||||
Beyer et al. [19] | 294 s (1) | 337 s (1) | ↓ | p = 0.04 | ||
Kim et al. [15] | 165 min (2) | 101 min (2) | ↑ | - | ||
Kozuka et al. [22] | 373 min(2) | 331 min (2) | ↑ | - | ||
Liu et al. [16] | 100.5 min (3) | 34 min (3) | ↑ | p < 0.01 | ||
Liu et al. [26] | 15 min (1) | 5–10 min (1) | ↑ | - | ||
Martini et al. [27] | 194 s (1) | 154 s (1) | ↑ | p < 0.001 | ||
Nam et al. [29] | 2771.2 s * (1) | 1916 s * (1) | ↑ | p < 0.002 | ||
Sung et al. [30] | 24 s (1) | 12 s (1) | ↑ | p < 0.001 | ||
Zhang et al. [18] | 3.623 min (2) | 0.744 min (2) | ↑ | - |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Sensitivity (%) | Specificity (%) | Sensitivity (%) | Specificity (%) | |||
a | ||||||
Abe et al. [48] | 64 | - | 81 | - | ↑ | p < 0.001 |
Beyer et al. [19] | 56.5 | - | 52.9 | - | ↓ | p < 0.001 |
Bogoni et al. [34] | 45.34 * | - | 59.34 * | - | ↑ | p < 0.03 |
Chae et al. [35] | 70 * | 69 * | 65 * | 84 * | ↓ | Not statistically significant |
Hwang et al. [50] | 79 * | 93.2 * | 88.4 * | 94 * | ↑ | p = 0.006–0.99 |
Kligerman et al. [42] | 44 | - | 50 | - | ↑ | p < 0.001 |
Sim et al. [46] | 65.1 | - | 70.3 | - | ↑ | p < 0.001 |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Accuracy (%) | AUC | Accuracy (%) | AUC | |||
b | ||||||
Abe et al. [47] | - | 0.81 | - | 0.87 | ↑ | p = 0.031 |
Abe et al. [48] | - | 0.94 | - | 0.98 | ↑ | p < 0.01 |
Abe et al. [48] | - | 0.77 | - | 0.81 | ↑ | p < 0.001 |
Awai et al. [33] | - | 0.64 | - | 0.67 | ↑ | p < 0.01 |
Awai et al. [32] | - | 0.843 | - | 0.924 | ↑ | p = 0.021 |
Chae et al. [35] | 69 * | 0.005 * | 75 * | 0.13 * | ↑ | Not statistically significant |
Chen et al. [36] | - | 0.84 * | - | 0.95 * | ↑ | p < 0.221 |
Fukushima et al. [49] | - | 0.972 * | - | 0.982 * | ↑ | p < 0.071 |
Hwang et al. [50] | - | 0.880 * | - | 0.934 * | ↑ | p <0.002 |
Kakeda et al. [41] | - | 0.924 | - | 0.986 | ↑ | p < 0.001 |
Kasai et al. [40] | - | 0.804 | - | 0.816 | ↑ | Not statistically significant |
Kligerman et al. [42] | - | 0.38 | - | 0.43 | ↑ | p = 0.007 |
Liu et al. [37] | - | 0.913 | - | 0.938 | ↑ | p = 0.0266 |
Matsuki et al. [38] | - | 0.831 | - | 0.956 | ↑ | p < 0.001 |
Nam et al. [43] | - | 0.85 * | - | 0.89 * | ↑ | p < 0.001-0.87 |
Oda et al. [44] | - | 0.816 | - | 0.843 | ↑ | p = 0.011–0.310 |
Rao et al. [39] | 78 | - | 82.8 | - | ↑ | p < 0.001 |
Schalekamp et al. [45] | - | 0.812 | - | 0.841 | ↑ | p = 0.0001 |
Author | Without AI-Based CAD | With AI-Based CAD | Change | Statistical Significance between Difference | ||
Time | Time | |||||
c | ||||||
Beyer et al. [19] | 294 s (1) | 274 s (1) | ↑ | p = 0.04 | ||
Bogoni et al. [34] | 143 s (1) | 225 s (1) | ↓ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Pehrson, L.M.; Lauridsen, C.A.; Tøttrup, L.; Fraccaro, M.; Elliott, D.; Zając, H.D.; Darkner, S.; Carlsen, J.F.; Nielsen, M.B. The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review. Diagnostics 2021, 11, 2206. https://doi.org/10.3390/diagnostics11122206
Li D, Pehrson LM, Lauridsen CA, Tøttrup L, Fraccaro M, Elliott D, Zając HD, Darkner S, Carlsen JF, Nielsen MB. The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review. Diagnostics. 2021; 11(12):2206. https://doi.org/10.3390/diagnostics11122206
Chicago/Turabian StyleLi, Dana, Lea Marie Pehrson, Carsten Ammitzbøl Lauridsen, Lea Tøttrup, Marco Fraccaro, Desmond Elliott, Hubert Dariusz Zając, Sune Darkner, Jonathan Frederik Carlsen, and Michael Bachmann Nielsen. 2021. "The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review" Diagnostics 11, no. 12: 2206. https://doi.org/10.3390/diagnostics11122206
APA StyleLi, D., Pehrson, L. M., Lauridsen, C. A., Tøttrup, L., Fraccaro, M., Elliott, D., Zając, H. D., Darkner, S., Carlsen, J. F., & Nielsen, M. B. (2021). The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review. Diagnostics, 11(12), 2206. https://doi.org/10.3390/diagnostics11122206