Detection, Diagnosis, and Monitoring of Early Caries: The Future of Individualized Dental Care
Abstract
:1. Introduction
2. Caries Terminology, Severity, and Activity Assessment
2.1. Caries Lesion Severity Assessment
2.1.1. Non-Cavitated Lesions
2.1.2. Cavitated Lesions
2.2. Caries Lesion Activity Assessment
2.2.1. Active Lesions
2.2.2. Arrested Lesions
3. The Paradigm Shift in the Understanding and Management of Dental Caries
4. Initial Caries Detection Methods
4.1. Light-Based Caries Detection and Monitoring Methods
4.1.1. The Use of Fluorescence in Caries Detection and Monitoring
4.1.2. The Use of Near-Infrared Transillumination in Caries Detection and Monitoring
4.2. New Developments for Lesion Assessment
4.2.1. Thermal Imaging and Optical Coherence Tomography for Lesion Activity Assessment and Monitoring
4.2.2. Dye-Enhanced Laser Fluorescence
4.2.3. Bioluminescent Photoproteins to Detect Lesion Activity in Enamel
4.2.4. Fluorescent Starch Nanoparticles
4.3. Methods to Differentiate between Cavitated and Non-Cavitated Lesions
5. A Proposal of a Workflow Integrating near Infrared Transillumination and Fluorescence into the Caries Management System
5.1. Clinical Scoring
- (a)
- Early lesions, which include code 1 and 2 ICDAS: enamel lesions.
- (b)
- Moderate lesions, codes 3 and 4 ICDAS: micro cavitated enamel lesion or non-cavitated dentin lesion.
- (c)
- Advanced or extensive lesions, codes 5 and 6 ICDAS: lesions presenting larger cavitations with visible dentin.
5.2. Near-Infrared Transillumination Scoring
5.3. Fluorescence Image Scoring
6. Conclusions
Funding
Conflicts of Interest
References
- GBD Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Innes, N.P.T.; Chu, C.H.; Fontana, M.; Lo, E.C.M.; Thomson, W.M.; Uribe, S.; Heiland, M.; Jepsen, S.; Schwendicke, F. A Century of Change towards Prevention and Minimal Intervention in Cariology. J. Dent. Res. 2019, 98, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Baelum, V.; Heidmann, J.; Nyvad, B. Dental caries paradigms in diagnosis and diagnostic research. Eur. J. Oral Sci. 2006, 114, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Machiulskiene, V.; Nyvad, B.; Baelum, V. Prevalence and severity of dental caries in 12-year-old children in Kaunas, Lithuania 1995. Caries Res. 1998, 32, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.D.; Shugars, D.A.; Bonito, A.J. Systematic reviews of selected dental caries diagnostic and management methods. J. Dent. Educ. 2001, 65, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Tellez, M.; Gomez, J.; Kaur, S.; Pretty, I.A.; Ellwood, R.; Ismail, A.I. Non-surgical management methods of noncavitated carious lesions. Community Dent. Oral Epidemiol. 2013, 41, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015, 15 (Suppl. S1), S3. [Google Scholar] [CrossRef]
- Pitts, N.B. Monitoring of caries progression in permanent and primary posterior approximal enamel by bitewing radiography. Community Dent. Oral Epidemiol. 1983, 11, 228–235. [Google Scholar] [CrossRef]
- Hollander, F.S.E. The apparent radiopaque surface layer of the enamel. Dent. Cosm. 1935, 77, 1187–1197. [Google Scholar]
- Applebaum, E. The Radiopaque Surface Layer of Enamel and Caries. J. Dent. Res. 1940, 19, 41–46. [Google Scholar] [CrossRef]
- Thewlis, J. The X-ray Examination of Enamel: (Section of Odontology). Proc. R. Soc. Med. 1940, 33, 387–398. [Google Scholar]
- Silverstone, L.M.; Hicks, M.J.; Featherstone, M.J. Dynamic factors affecting lesion initiation and progression in human dental enamel. II. Surface morphology of sound enamel and carieslike lesions of enamel. Quintessence Int. 1988, 19, 773–785. [Google Scholar]
- Fejerskov, O.; Nyvad, B.; Kidd, E.A.M. Dental Caries the Disease and Its Clinical Management; Wiley-Blackwell: Chichester, UK; Ames, IA, USA, 2015. [Google Scholar]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed]
- Giacaman, R.A.; Fernández, C.E.; Muñoz-Sandoval, C.; León, S.; García-Manríquez, N.; Echeverría, C.; Valdés, S.; Castro, R.J.; Gambetta-Tessini, K. Understanding dental caries as a non-communicable and behavioral disease: Management implications. Front. Oral Health 2022, 3, 764479. [Google Scholar] [CrossRef]
- Zero, D.T.; Fontana, M.; Martinez-Mier, E.A.; Ferreira-Zandona, A.; Ando, M.; Gonzalez-Cabezas, C.; Bayne, S. The biology, prevention, diagnosis and treatment of dental caries: Scientific advances in the United States. J. Am. Dent. Assoc. 2009, 140 (Suppl. S1), 25S–34S. [Google Scholar] [CrossRef]
- Luan, W.; Baelum, V.; Fejerskov, O.; Chen, X. Ten-year incidence of dental caries in adult and elderly Chinese. Caries Res. 2000, 34, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.I.; Pitts, N.B.; Tellez, M.; Authors of International Caries Classification and Management System (ICCMS); Management, S.; Banerjee, A.; Deery, C.; Douglas, G.; Eggertsson, H.; Ekstrand, K.; et al. The International Caries Classification and Management System (ICCMS) An Example of a Caries Management Pathway. BMC Oral Health 2015, 15 (Suppl. S1), S9. [Google Scholar] [CrossRef]
- Pitts, N.B.; Ekstrand, K.R.; Foundation, I. International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)—Methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral Epidemiol. 2013, 41, e41–e52. [Google Scholar] [CrossRef]
- Nyvad, B. Diagnosis versus detection of caries. Caries Res. 2004, 38, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, K.R.; Ricketts, D.N.; Kidd, E.A.; Qvist, V.; Schou, S. Detection, diagnosing, monitoring and logical treatment of occlusal caries in relation to lesion activity and severity: An in vivo examination with histological validation. Caries Res. 1998, 32, 247–254. [Google Scholar] [CrossRef]
- Nyvad, B.; Machiulskiene, V.; Baelum, V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res. 1999, 33, 252–260. [Google Scholar] [CrossRef]
- Frencken, J.E.; de Amorim, R.G.; Faber, J.; Leal, S.C. The Caries Assessment Spectrum and Treatment (CAST) index: Rational and development. Int. Dent. J. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- Ekstrand, K.; Qvist, V.; Thylstrup, A. Light microscope study of the effect of probing in occlusal surfaces. Caries Res. 1987, 21, 368–374. [Google Scholar] [CrossRef]
- Boston, D.W.; Jefferies, S.R. Physical effects of non-cavitated explorer probing on enamel smooth-surface carious lesions. Am. J. Dent. 2015, 28, 183–189. [Google Scholar] [PubMed]
- Nyvad, B.; Kilian, M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 1990, 24, 267–272. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Paris, S. When and How to Intervene in the Caries Process. Oper. Dent. 2016, 41, S35–S47. [Google Scholar] [CrossRef]
- Kidd, E.A.; Pitts, N.B. A reappraisal of the value of the bitewing radiograph in the diagnosis of posterior approximal caries. Br. Dent. J. 1990, 169, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Nyvad, B.; Kilian, M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 1987, 95, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Hintze, H.; Wenzel, A.; Danielsen, B.; Nyvad, B. Reliability of visual examination, fibre-optic transillumination, and bite-wing radiography, and reproducibility of direct visual examination following tooth separation for the identification of cavitated carious lesions in contacting approximal surfaces. Caries Res. 1998, 32, 204–209. [Google Scholar] [CrossRef]
- Akpata, E.S.; Farid, M.R.; al-Saif, K.; Roberts, E.A. Cavitation at radiolucent areas on proximal surfaces of posterior teeth. Caries Res. 1996, 30, 313–316. [Google Scholar] [CrossRef]
- Pitts, N.B.; Rimmer, P.A. An in vivo comparison of radiographic and directly assessed clinical caries status of posterior approximal surfaces in primary and permanent teeth. Caries Res. 1992, 26, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Innes, N.P.; Evans, D.J.; Stirrups, D.R. Sealing caries in primary molars: Randomized control trial, 5-year results. J. Dent. Res. 2011, 90, 1405–1410. [Google Scholar] [CrossRef]
- Mertz-Fairhurst, E.J.; Curtis, J.W.; Ergle, J.W.; Rueggeberg, F.A.; Adair, S.M. Ultraconservative and Cariostatic Sealed Restorations: Results at Year 10. J. Am. Dent. Assoc. 1998, 129, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Marggraf, T.; Ganas, P.; Paris, S.; Schwendicke, F. Bacterial reduction in sealed caries lesions is strain- and material-specific. Sci. Rep. 2018, 8, 3767. [Google Scholar] [CrossRef] [PubMed]
- Paddick, J.S.; Brailsford, S.R.; Kidd, E.A.; Beighton, D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl. Env. Microbiol. 2005, 71, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Frencken, J.E.; Bjorndal, L.; Maltz, M.; Manton, D.J.; Ricketts, D.; Van Landuyt, K.; Banerjee, A.; Campus, G.; Domejean, S.; et al. Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal. Adv. Dent. Res. 2016, 28, 58–67. [Google Scholar] [CrossRef]
- Pitts, N. “ICDAS”—An international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management. Community Dent. Health 2004, 21, 193–198. [Google Scholar]
- Nyvad, B.; Baelum, V. Nyvad Criteria for Caries Lesion Activity and Severity Assessment: A Validated Approach for Clinical Management and Research. Caries Res. 2018, 52, 397–405. [Google Scholar] [CrossRef]
- Thylstrup, A.; Bruun, C.; Holmen, L. In vivo caries models—Mechanisms for caries initiation and arrestment. Adv. Dent. Res. 1994, 8, 144–157. [Google Scholar] [CrossRef]
- Nyvad, B.; Fejerskov, O. Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Community Dent. Oral Epidemiol. 1997, 25, 69–75. [Google Scholar] [CrossRef]
- Bakhshandeh, A.; Floriano, I.; Braga, M.M.; Thorlacius, K.A.; Ekstrand, K.R. Relationship between depth of approximal caries lesions and presence of bacteria in the dentine in primary and permanent posterior teeth: A radiographic examination with microbiological evaluation. Acta Odontol. Scand. 2018, 76, 509–514. [Google Scholar] [CrossRef] [PubMed]
- de Assuncao, I.V.; da Costa Gde, F.; Borges, B.C. Systematic review of noninvasive treatments to arrest dentin non-cavitated caries lesions. World J. Clin. Cases 2014, 2, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Dorri, M.; Dunne, S.M.; Walsh, T.; Schwendicke, F. Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth. Cochrane Database Syst. Rev. 2015, 2015, CD010431. [Google Scholar] [CrossRef]
- GV, B. Operative Dentistry, Pathology of the Hard Tissues of the Teeth; Claudius Ash: London, UK, 1914; Volume 1. [Google Scholar]
- Gustafsson, B.E.; Quensel, C.E.; Lanke, L.S.; Lundqvist, C.; Grahnen, H.; Bonow, B.E.; Krasse, B. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol. Scand. 1954, 11, 232–264. [Google Scholar] [CrossRef] [PubMed]
- Orland, F.J.; Blayney, J.R.; Harrison, R.W.; Reyniers, J.A.; Trexler, P.C.; Wagner, M.; Gordon, H.A.; Luckey, T.D. Use of the germfree animal technic in the study of experimental dental caries. I. Basic observations on rats reared free of all microorganisms. J. Dent. Res. 1954, 33, 147–174. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, S.; Stanley, H.R.; Fitzgerald, R.J. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg. Oral Med. Oral Pathol. 1965, 20, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health 2006, 6 (Suppl. S1), S14. [Google Scholar] [CrossRef]
- Mejare, I.; Stenlund, H.; Zelezny-Holmlund, C. Caries incidence and lesion progression from adolescence to young adulthood: A prospective 15-year cohort study in Sweden. Caries Res. 2004, 38, 130–141. [Google Scholar] [CrossRef]
- Martignon, S.; Chavarria, N.; Ekstrand, K.R. Caries status and proximal lesion behaviour during a 6-year period in young adult Danes: An epidemiological investigation. Clin. Oral Investig. 2010, 14, 383–390. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Davies-Ludlow, L.E.; White, S.C. Patient risk related to common dental radiographic examinations: The impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J. Am. Dent. Assoc. 2008, 139, 1237–1243. [Google Scholar] [CrossRef]
- Schwendicke, F.; Tzschoppe, M.; Paris, S. Radiographic caries detection: A systematic review and meta-analysis. J. Dent. 2015, 43, 924–933. [Google Scholar] [CrossRef]
- Fried, D.; Featherstone, J.D.; Darling, C.L.; Jones, R.S.; Ngaotheppitak, P.; Buhler, C.M. Early caries imaging and monitoring with near-infrared light. Dent. Clin. N. Am. 2005, 49, 771–793. [Google Scholar] [CrossRef]
- Pretty, I.A. Caries detection and diagnosis: Novel technologies. J. Dent. 2006, 34, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Kuhnisch, J.; Sochtig, F.; Pitchika, V.; Laubender, R.; Neuhaus, K.W.; Lussi, A.; Hickel, R. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin. Oral Investig. 2016, 20, 821–829. [Google Scholar] [CrossRef]
- Featherstone, J.D.; Domejean, S. Minimal intervention dentistry: Part 1. From ‘compulsive’ restorative dentistry to rational therapeutic strategies. Br. Dent. J. 2012, 213, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.; Krejci, I. Longitudinal Caries Detection and Monitoring with Near Infrared Transillumination; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Abdelaziz, M.; Krejci, I.; Perneger, T.; Feilzer, A.; Vazquez, L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study. J. Dent. 2018, 70, 40–45. [Google Scholar] [CrossRef]
- Mohamed Nur, M.; Vazquez, L.; Anton, Y.O.C.; Giacobino, C.; Krejci, I.; Abdelaziz, M. Near-Infrared Transillumination for Occlusal Carious Lesion Detection: A Retrospective Reliability Study. Diagnostics 2022, 13, 36. [Google Scholar] [CrossRef]
- Raper, H. Practical clinical preventive dentistry based upon periodic roentgen–ray examinations. J. Am. Dent. Assoc. 1925, 12, 1084–1100. [Google Scholar]
- Machiulskiene, V.; Nyvad, B.; Baelum, V. A comparison of clinical and radiographic caries diagnoses in posterior teeth of 12-year-old Lithuanian children. Caries Res. 1999, 33, 340–348. [Google Scholar] [CrossRef]
- Wenzel, A. Radiographic display of carious lesions and cavitation in approximal surfaces: Advantages and drawbacks of conventional and advanced modalities. Acta Odontol. Scand. 2014, 72, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B. Clinical diagnosis of dental caries: A European perspective. J. Dent. Educ. 2001, 65, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Stookey, G. Should a dental explorer be used to probe suspected carious lesions? No—Use of an explorer can lead to misdiagnosis and disrupt remineralization. J. Am. Dent. Assoc. 2005, 136, 1527, 1529, 1531. [Google Scholar] [PubMed]
- Gordan, V.V.; Riley, J.L., 3rd; De Carvalho, R.M.; Snyder, J.; Sanderson, J.L., Jr.; Anderson, M.; Gilbert, G.H. Methods used by dental practice-based research network dentists to diagnose dental caries. Tex. Dent. J. 2013, 130, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.I. Visual and visuo-tactile detection of dental caries. J. Dent. Res. 2004, 83, C56–C66. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Eckert, G.J.; Zero, D.T. Preliminary study to establish a relationship between tactile sensation and surface roughness. Caries Res. 2010, 44, 24–28. [Google Scholar] [CrossRef]
- Gomez, J.; Tellez, M.; Pretty, I.A.; Ellwood, R.P.; Ismail, A.I. Non-cavitated carious lesions detection methods: A systematic review. Community Dent. Oral Epidemiol. 2013, 41, 54–66. [Google Scholar] [CrossRef]
- Yang, J.; Dutra, V. Utility of radiology, laser fluorescence, and transillumination. Dent. Clin. N. Am. 2005, 49, 739–752. [Google Scholar] [CrossRef]
- Gill, J. Dental Caries: The Disease and its Clinical Management, Third Edition. Br. Dent. J. 2016, 221, 443. [Google Scholar] [CrossRef]
- Schwendicke, F.; Paris, S.; Stolpe, M. Detection and treatment of proximal caries lesions: Milieu-specific cost-effectiveness analysis. J. Dent. 2015, 43, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; Peters, M.C.; Manton, D.J.; Leal, S.C.; Gordan, V.V.; Eden, E. Minimal intervention dentistry for managing dental caries—A review: Report of a FDI task group. Int. Dent. J. 2012, 62, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Dayo, A.F.; Wolff, M.S.; Syed, A.Z.; Mupparapu, M. Radiology of Dental Caries. Dent. Clin. N. Am. 2021, 65, 427–445. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, M.H. Detecting Short-Term Changes in the Activity of Caries Lesions with the Aid of New Technologies. Curr. Oral Health Rep. 2015, 2, 102–109. [Google Scholar] [CrossRef]
- Twetman, S.; Axelsson, S.; Dahlen, G.; Espelid, I.; Mejare, I.; Norlund, A.; Tranaeus, S. Adjunct methods for caries detection: A systematic review of literature. Acta Odontol. Scand. 2013, 71, 388–397. [Google Scholar] [CrossRef]
- Abogazalah, N.; Ando, M. Alternative methods to visual and radiographic examinations for approximal caries detection. J. Oral Sci. 2017, 59, 315–322. [Google Scholar] [CrossRef]
- Angmar-Månsson, B.; ten Bosch, J.J. Quantitative light-induced fluorescence (QLF): A method for assessment of incipient caries lesions. Dentomaxillofac Radiol. 2001, 30, 298–307. [Google Scholar] [CrossRef]
- Macey, R.; Walsh, T.; Riley, P.; Glenny, A.M.; Worthington, H.V.; Fee, P.A.; Clarkson, J.E.; Ricketts, D. Fluorescence devices for the detection of dental caries. Cochrane Database Syst. Rev. 2020, 12, Cd013811. [Google Scholar] [CrossRef]
- Shakibaie, F.; George, R.; Walsh, L. Applications of Laser induced Fluorescence in Dentistry. Int. J. Dent. Clin. 2011, 3, 38–44. [Google Scholar]
- Walsh, L.; Shakibaie, F. Ultraviolet-induced fluorescence: Shedding new light on dental biofilms and dental caries. Aust. Dent. Pract. 2007, 18, 56–60. [Google Scholar]
- Lussi, A.; Megert, B.; Longbottom, C.; Reich, E.; Francescut, P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur. J. Oral Sci. 2001, 109, 14–19. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Hug, I.; Diniz, M.B.; Lussi, A. Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro. Caries Res. 2008, 42, 297–304. [Google Scholar] [CrossRef]
- Kuhnisch, J.; Heinrich-Weltzien, R. Quantitative light-induced fluorescence (QLF)—A literature review. Int. J. Comput. Dent. 2004, 7, 325–338. [Google Scholar]
- Rodrigues, J.A.; Hug, I.; Neuhaus, K.W.; Lussi, A. Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries. J. Biomed. Opt. 2011, 16, 107003. [Google Scholar] [CrossRef]
- Achilleos, E.E.; Rahiotis, C.; Kakaboura, A.; Vougiouklakis, G. Evaluation of a new fluorescence-based device in the detection of incipient occlusal caries lesions. Lasers Med. Sci. 2013, 28, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Rechmann, P.; Charland, D.; Rechmann, B.M.; Featherstone, J.D. Performance of laser fluorescence devices and visual examination for the detection of occlusal caries in permanent molars. J. Biomed. Opt. 2012, 17, 036006. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Faral, B.; Boudenne, J.M.; Batani, D.; Benuzzi, A.; Bossi, S. Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1994, 50, R3314–R3317. [Google Scholar] [CrossRef] [PubMed]
- Buchalla, W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries Res. 2005, 39, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Buchalla, W.; Lennon, A.M.; Attin, T. Comparative fluorescence spectroscopy of root caries lesions. Eur. J. Oral Sci. 2004, 112, 490–496. [Google Scholar] [CrossRef]
- Buchalla, W.; Lennon, A.M.; Attin, T. Fluorescence spectroscopy of dental calculus. J. Periodontal Res. 2004, 39, 327–332. [Google Scholar] [CrossRef]
- Volgenant, C.M.; Hoogenkamp, M.A.; Buijs, M.J.; Zaura, E.; Ten Cate, J.M.; van der Veen, M.H. Red fluorescent biofilm: The thick, the old, and the cariogenic. J. Oral Microbiol. 2016, 8, 30346. [Google Scholar] [CrossRef]
- Volgenant, C.M.; van der Veen, M.H.; de Soet, J.J.; ten Cate, J.M. Effect of metalloporphyrins on red autofluorescence from oral bacteria. Eur. J. Oral Sci. 2013, 121, 156–161. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, M.H.; Volgenant, C.M.; Keijser, B.; Ten Cate, J.B.; Crielaard, W. Dynamics of red fluorescent dental plaque during experimental gingivitis—A cohort study. J. Dent. 2016, 48, 71–76. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, M.H.; de Josselin de Jong, E. Application of quantitative light-induced fluorescence for assessing early caries lesions. Monogr. Oral Sci. 2000, 17, 144–162. [Google Scholar] [CrossRef]
- Angmar-Mansson, B.; ten Bosch, J.J. Optical methods for the detection and quantification of caries. Adv. Dent. Res. 1987, 1, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Young, D.A. New caries detection technologies and modern caries management: Merging the strategies. Gen. Dent. 2002, 50, 320–331. [Google Scholar]
- Zijp, J.R.; ten Bosch, J.J.; Groenhuis, R.A. HeNe-laser light scattering by human dental enamel. J. Dent. Res. 1995, 74, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Girkin, J.M. A review of potential new diagnostic modalities for caries lesions. J. Dent. Res. 2004, 83, C89–C94. [Google Scholar] [CrossRef]
- Karlsson, L. Caries Detection Methods Based on Changes in Optical Properties between Healthy and Carious Tissue. Int. J. Dent. 2010, 2010, 270729. [Google Scholar] [CrossRef]
- Karlsson, L.; Maia, A.M.; Kyotoku, B.B.; Tranaeus, S.; Gomes, A.S.; Margulis, W. Near-infrared transillumination of teeth: Measurement of a system performance. J. Biomed. Opt. 2010, 15, 036001. [Google Scholar] [CrossRef]
- Fried, D.; Glena, R.E.; Featherstone, J.D.; Seka, W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl. Opt. 1995, 34, 1278–1285. [Google Scholar] [CrossRef]
- Friedman, J.; Marcus, M.I. Transillumination of the oral cavity with use of fiber optics. J. Am. Dent. Assoc. 1970, 80, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J. Transillumination of the oral cavity by means of fiber optics. Med. Hyg. Geneve 1972, 30, 1460–1462. [Google Scholar] [PubMed]
- Barenie, J.; Leske, G.; Ripa, L.W. The use of fiber optics transillumination for the detection of proximal caries. Oral Surg. Oral Med. Oral Pathol. 1973, 36, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Bomba, J.L. Fiber optic lighting systems: Their role in dentistry. Dent. Clin. N. Am. 1971, 15, 197–218. [Google Scholar] [CrossRef]
- Cortes, D.F.; Ekstrand, K.R.; Elias-Boneta, A.R.; Ellwood, R.P. An in vitro comparison of the ability of fibre-optic transillumination, visual inspection and radiographs to detect occlusal caries and evaluate lesion depth. Caries Res. 2000, 34, 443–447. [Google Scholar] [CrossRef]
- Pine, C.M.; ten Bosch, J.J. Dynamics of and diagnostic methods for detecting small carious lesions. Caries Res. 1996, 30, 381–388. [Google Scholar] [CrossRef]
- Neuhaus, K.W.; Ellwood, R.; Lussi, A.; Pitts, N.B. Traditional lesion detection aids. Monogr. Oral Sci. 2009, 21, 42–51. [Google Scholar] [CrossRef]
- Schneiderman, A.; Elbaum, M.; Shultz, T.; Keem, S.; Greenebaum, M.; Driller, J. Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): In vitro study. Caries Res. 1997, 31, 103–110. [Google Scholar] [CrossRef]
- Keem, S.; Elbaum, M. Wavelet representations for monitoring changes in teeth imaged with digital imaging fiber-optic transillumination. IEEE Trans. Med. Imaging 1997, 16, 653–663. [Google Scholar] [CrossRef]
- Astvaldsdottir, A.; Ahlund, K.; Holbrook, W.P.; de Verdier, B.; Tranaeus, S. Approximal Caries Detection by DIFOTI: In Vitro Comparison of Diagnostic Accuracy/Efficacy with Film and Digital Radiography. Int. J. Dent. 2012, 2012, 326401. [Google Scholar] [CrossRef]
- Young, D.A.; Featherstone, J.D. Digital imaging fiber-optic trans-illumination, F-speed radiographic film and depth of approximal lesions. J. Am. Dent. Assoc. 2005, 136, 1682–1687. [Google Scholar] [CrossRef]
- Vaarkamp, J.; ten Bosch, J.; Verdonschot, E.H.; Huysmans, M.C. Wavelength-dependent fibre-optic transillumination of small approximal caries lesions: The use of a dye, and a comparison to bitewing radiography. Caries Res. 1997, 31, 232–237. [Google Scholar] [CrossRef]
- Mialhe, F.L.; Pereira, A.C.; Meneghim Mde, C.; Ambrosano, G.M.; Pardi, V. The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approximal caries in youngsters. Indian. J. Dent. Res. 2009, 20, 136–140. [Google Scholar] [CrossRef]
- Fried, D. Diagnostic Imaging and Spectroscopy. In Handbook of Biophotonics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Darling, C.L.; Huynh, G.D.; Fried, D. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J. Biomed. Opt. 2006, 11, 34023. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Huynh, G.; Jones, G.; Fried, D. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt. Express 2003, 11, 2259–2265. [Google Scholar] [CrossRef]
- Buhler, C.; Ngaotheppitak, P.; Fried, D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt. Express 2005, 13, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M.; Krejci, I. DIAGNOcam—A Near Infrared Digital Imaging Transillumination (NIDIT) technology. Int. J. Esthet. Dent. 2015, 10, 158–165. [Google Scholar] [PubMed]
- Simon, J.C.; Lucas, S.A.; Lee, R.C.; Darling, C.L.; Staninec, M.; Vaderhobli, R.; Pelzner, R.; Fried, D. Near-infrared imaging of secondary caries lesions around composite restorations at wavelengths from 1300-1700-nm. Dent. Mater. 2016, 32, 587–595. [Google Scholar] [CrossRef]
- Maia, A.M.; Karlsson, L.; Margulis, W.; Gomes, A.S. Evaluation of two imaging techniques: Near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries. Dentomaxillofac Radiol. 2011, 40, 429–433. [Google Scholar] [CrossRef]
- Bussaneli, D.G.; Restrepo, M.; Boldieri, T.; Pretel, H.; Mancini, M.W.; Santos-Pinto, L.; Cordeiro, R.C. Assessment of a new infrared laser transillumination technology (808 nm) for the detection of occlusal caries-an in vitro study. Lasers Med. Sci. 2015, 30, 1873–1879. [Google Scholar] [CrossRef]
- Staninec, M.; Douglas, S.M.; Darling, C.L.; Chan, K.; Kang, H.; Lee, R.C.; Fried, D. Non-destructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg. Med. 2011, 43, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fried, D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg. Med. 2009, 41, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Almaz, E.C.; Simon, J.C.; Fried, D.; Darling, C.L. Influence of stains on lesion contrast in the pits and fissures of tooth occlusal surfaces from 800-1600-nm. Proc. SPIE Int. Soc. Opt. Eng. 2016, 9692, 141–146. [Google Scholar] [CrossRef]
- Berg, R.A.; Simon, J.C.; Fried, D.; Darling, C.L. Optical changes of dentin in the near-IR as a function of mineral content. Proc. SPIE Int. Soc. Opt. Eng. 2017, 10044, 63–68. [Google Scholar] [CrossRef]
- Michou, S.; Vannahme, C.; Bakhshandeh, A.; Ekstrand, K.R.; Benetti, A.R. Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth. J. Dent. 2022, 116, 103841. [Google Scholar] [CrossRef] [PubMed]
- Schlenz, M.A.; Schupp, B.; Schmidt, A.; Wöstmann, B.; Baresel, I.; Krämer, N.; Schulz-Weidner, N. New Caries Diagnostic Tools in Intraoral Scanners: A Comparative In Vitro Study to Established Methods in Permanent and Primary Teeth. Sensor 2022, 22, 2156. [Google Scholar] [CrossRef] [PubMed]
- Göstemeyer, G.; Preus, M.; Elhennawy, K.; Schwendicke, F.; Paris, S.; Askar, H. Accuracy of different approaches for detecting proximal root caries lesions in vitro. Clin. Oral Investig. 2023, 27, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Sochtig, F.; Hickel, R.; Kuhnisch, J. Caries detection and diagnostics with near-infrared light transillumination: Clinical experiences. Quintessence Int. 2014, 45, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Elsawaf, A.E.; Deri, A.Y.A.; Armanious, P.S.; Khasawneh, A.M.; AlKhaja, A.M.; Yasin, A.R.; Al-Rawi, N.H.; Kawas, S.A.; Shetty, S.R. Efficiency of Near-Infrared Technology in the Clinical Detection of Carious Lesions: A Systematic Review. Eur. J. Dent. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Lara-Capi, C.; Cagetti, M.G.; Lingstrom, P.; Lai, G.; Cocco, F.; Simark-Mattsson, C.; Campus, G. Digital transillumination in caries detection versus radiographic and clinical methods: An in-vivo study. Dentomaxillofac Radiol. 2017, 46, 20160417. [Google Scholar] [CrossRef]
- Abogazalah, N.; Eckert, G.J.; Ando, M. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries. J. Dent. 2017, 63, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Litzenburger, F.; Heck, K.; Pitchika, V.; Neuhaus, K.W.; Jost, F.N.; Hickel, R.; Jablonski-Momeni, A.; Welk, A.; Lederer, A.; Kuhnisch, J. Inter-and intra-examiner reliability of bitewing radiography and near-infrared light transillumination for proximal caries detection and assessment. Dentomaxillofac Radiol. 2018, 46, 20170292. [Google Scholar] [CrossRef]
- Bin-Shuwaish, M.; Yaman, P.; Dennison, J.; Neiva, G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. J. Am. Dent. Assoc. 2008, 139, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Domejean-Orliaguet, S.; Leger, S.; Auclair, C.; Gerbaud, L.; Tubert-Jeannin, S. Caries management decision: Influence of dentist and patient factors in the provision of dental services. J. Dent. 2009, 37, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Rechmann, P.; Domejean, S.; Rechmann, B.M.; Kinsel, R.; Featherstone, J.D. Approximal and occlusal carious lesions: Restorative treatment decisions by California dentists. J. Am. Dent. Assoc. 2016, 147, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Mejàre, K.E.I. Radiography for caries diagnosis. In Dental Caries the Disease and its Clinical Management, 2nd ed.; Fejerskov, O., Kidd, E.A.M., Eds.; Blackwell Munksgaard: Oxford, UK, 2008; pp. 69–88. [Google Scholar]
- De Zutter, M.; Vandenbulcke, J.D.; Van Acker, J.W.G.; Martens, L.C. In vivo correlation of near-infrared transillumination and visual inspection with bitewing radiography for the detection of interproximal caries in permanent and primary teeth. Eur. Arch. Paediatr. Dent. 2020, 21, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Litzenburger, F.; Lederer, A.; Kollmuß, M.; Hickel, R.; Kunzelmann, K.-H.; Heck, K. Near-infrared transillumination with high dynamic range imaging for occlusal caries detection in vitro. Lasers Med. Sci. 2020, 35, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S.; Harless, J.D. Comparison of artificial white spots by microradiography and polarized light microscopy. J. Dent. Res. 1984, 63, 1271–1275. [Google Scholar] [CrossRef]
- Chan, K.H.; Tom, H.; Lee, R.C.; Kang, H.; Simon, J.C.; Staninec, M.; Darling, C.L.; Pelzner, R.B.; Fried, D. Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention. Lasers Surg. Med. 2016, 48, 915–923. [Google Scholar] [CrossRef]
- Jones, R.S.; Darling, C.L.; Featherstone, J.D.; Fried, D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2006, 11, 014016. [Google Scholar] [CrossRef]
- Lee, R.C.; Darling, C.L.; Fried, D. Automated detection of remineralization in simulated enamel lesions with PS-OCT. Proc. SPIE Int. Soc. Opt. Eng. 2014, 8929, 89290E. [Google Scholar] [CrossRef]
- Ando, M.; Ferreira-Zandona, A.G.; Eckert, G.J.; Zero, D.T.; Stookey, G.K. Pilot clinical study to assess caries lesion activity using quantitative light-induced fluorescence during dehydration. J. Biomed. Opt. 2017, 22, 35005. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Darling, C.L.; Fried, D. Assessment of remineralization via measurement of dehydration rates with thermal and near-IR reflectance imaging. J. Dent. 2015, 43, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Darling, C.L.; Fried, D. Activity assessment of root caries lesions with thermal and near-infrared imaging methods. J. Biophotonics 2016, 10, 433–445. [Google Scholar] [CrossRef]
- Lee, R.C.; Staninec, M.; Le, O.; Fried, D. Infrared methods for assessment of the activity of natural enamel caries lesions. IEEE J. Sel. Top. Quantum Electron. 2014, 22, 6803609. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Matsuyama, K.; Nakashima, S. Quantification of Early Carious Enamel Lesions by using an Infrared Camera. In Early Detection of Dental Caries II; Stookey, G.K., Ed.; Indiana University: Indianapolis, IN, USA, 1999; Volume 4, pp. 83–99. [Google Scholar]
- Zakian, C.M.; Taylor, A.M.; Ellwood, R.P.; Pretty, I.A. Occlusal caries detection by using thermal imaging. J. Dent. 2010, 38, 788–795. [Google Scholar] [CrossRef]
- Yang, V.; Zhu, Y.; Curtis, D.; Le, O.; Chang, N.; Fried, W.; Simon, J.C.; Banan, P.; Darling, C.; Fried, D. Thermal Imaging of Root Caries In Vivo. J. Dent. Res. 2020, 99, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Fried, W.A.; Abdelaziz, M.; Darling, C.L.; Fried, D. High Contrast Reflectance Imaging of Enamel Demineralization and Remineralization at 1950-nm for the Assessment of Lesion Activity. Lasers Surg. Med. 2021, 53, 968–977. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Yang, V.; Chang, N.N.; Darling, C.; Fried, W.; Seto, J.; Fried, D. Monitoring silver diamine fluoride application with optical coherence tomography and thermal imaging: An in vitro proof of concept study. Lasers Surg. Med. 2022, 54, 790–803. [Google Scholar] [CrossRef]
- Eggertsson, H.; Analoui, M.; van der Veen, M.; Gonzalez-Cabezas, C.; Eckert, G.; Stookey, G. Detection of early interproximal caries in vitro using laser fluorescence, dye-enhanced laser fluorescence and direct visual examination. Caries Res. 1999, 33, 227–233. [Google Scholar] [CrossRef]
- Pitts, N.B.; Longbottom, C.; Christie, A.; Vernon, B.; Bailey, G. The Calcivis story—Enamel caries activity assessment from technology to practice. Br. Dent. J. 2021, 231, 775–780. [Google Scholar] [CrossRef]
- Drancourt, N.; Roger-Leroi, V.; Pereira, B.; Munoz-Sanchez, M.L.; Linas, N.; Vendittelli, F.; Domejean, S. Validity of Soprolife camera and Calcivis device in caries lesion activity assessment. Br. Dent. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.; Shanks, N.; Longbottom, C.; Willins, M.; Vernon, B. Clinical validation of a novel bioluminescence imaging technology for aiding the assessment of carious lesion activity status. Clin. Exp. Dent. Res. 2021, 7, 772–785. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.A.; Chang, S.-R.; Troske, W.J.; Clarkson, B.H.; Lahann, J. Nanoparticle-Based Targeting and Detection of Microcavities. Adv. Healthc. Mater. 2017, 6, 1600883. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.A.; Bloembergen, W.; Tenuta, L.M.A.; Flannagan, S.E.; Jones, G.W.; Pan, L.-C.; Newton, M.; Clarkson, B.H.; Lahann, J.; Bloembergen, S.; et al. Early occlusal caries detection using targeted fluorescent starch nanoparticles. J. Dent. 2022, 125, 104243. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; Phillips, T.S.; Perozo, B.I.; Kataoka, Y.; Movaghari Pour, F.; Farah, R.; Obiefuna, A.C.; Farokhi, M.R. Evaluation of a novel caries detecting oral rinse. BDJ Open 2023, 9, 12. [Google Scholar] [CrossRef]
- Jones, K.A.; Jones, N.; Tenuta, L.M.A.; Bloembergen, W.; Flannagan, S.E.; González-Cabezas, C.; Clarkson, B.; Pan, L.-C.; Lahann, J.; Bloembergen, S. Convolution Neural Networks and Targeted Fluorescent Nanoparticles to Detect and ICDAS Score Caries. Caries Res. 2022, 56, 419–428. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, F.B.; Rosito, D.B.; Toigo, E.; dos Santos, C.K. Diagnosis of approximal caries: Radiographic versus clinical examination using tooth separation. Am. J. Dent. 1992, 5, 245–248. [Google Scholar]
- Akbari, M.; Zarch, H.H.; Movagharipour, F.; Ahrari, F. A pilot study of a modified radiographic technique for detecting early proximal cavities. Caries Res. 2013, 47, 612–616. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Krejci, I.; Fried, D. Enhancing the detection of proximal cavities on near infrared transillumination images with Indocyanine Green (ICG) as a contrast medium: In vitro proof of concept studies. J. Dent. 2019, 91, 103222. [Google Scholar] [CrossRef]
- Simon, J.C.; Darling, C.L.; Fried, D. Assessment of cavitation in artificial approximal dental lesions with near-IR imaging. Proc. SPIE Int. Soc. Opt. Eng. 2017, 10044, 9–15. [Google Scholar] [CrossRef]
- Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schurmann, F.; Krejci, I.; Markram, H. Caries Detection with Near-Infrared Transillumination Using Deep Learning. J. Dent. Res. 2019, 98, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Mertens, S.; Cantu, A.G.; Chaurasia, A.; Meyer-Lueckel, H.; Krois, J. Cost-effectiveness of AI for caries detection: Randomized trial. J. Dent. 2022, 119, 104080. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Stolpe, M.; Meyer-Lueckel, H.; Paris, S. Detecting and treating occlusal caries lesions: A cost-effectiveness analysis. J. Dent. Res. 2015, 94, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Mejare, I.; Kallest, C.; Stenlund, H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: A prospective radiographic study. Caries Res. 1999, 33, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F. Tailored Dentistry: From “One Size Fits All” to Precision Dental Medicine? Oper. Dent. 2018, 43, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.; Zakian, C.; Salsone, S.; Pinto, S.C.; Taylor, A.; Pretty, I.A.; Ellwood, R. In vitro performance of different methods in detecting occlusal caries lesions. J. Dent. 2013, 41, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.H.; Lee, E.S.; Jung, H.I.; Kang, S.M.; de Josselin de Jong, E.; Kim, B.I. Development of a fluorescence-image scoring system for assessing noncavitated occlusal caries. Photodiagn. Photodyn. Ther. 2018, 21, 36–42. [Google Scholar] [CrossRef]
- Pitts, N.B.; Banerjee, A.; Mazevet, M.E.; Goffin, G.; Martignon, S. From ‘ICDAS’ to ‘CariesCare International’: The 20-year journey building international consensus to take caries evidence into clinical practice. Br. Dent. J. 2021, 231, 769–774. [Google Scholar] [CrossRef]
- Lee, D.; Fried, D.; Darling, C.L. Near-IR Multi-modal Imaging of Natural Occlusal Lesions. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7162, 71620X. [Google Scholar] [CrossRef] [PubMed]
- Tassery, H.; Levallois, B.; Terrer, E.; Manton, D.J.; Otsuki, M.; Koubi, S.; Gugnani, N.; Panayotov, I.; Jacquot, B.; Cuisinier, F.; et al. Use of new minimum intervention dentistry technologies in caries management. Aust. Dent. J. 2013, 58 (Suppl. S1), 40–59. [Google Scholar] [CrossRef]
- Martignon, S.; Pitts, N.B.; Goffin, G.; Mazevet, M.; Douglas, G.V.A.; Newton, J.T.; Twetman, S.; Deery, C.; Domejean, S.; Jablonski-Momeni, A.; et al. CariesCare practice guide: Consensus on evidence into practice. Br. Dent. J. 2019, 227, 353–362. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, M. Detection, Diagnosis, and Monitoring of Early Caries: The Future of Individualized Dental Care. Diagnostics 2023, 13, 3649. https://doi.org/10.3390/diagnostics13243649
Abdelaziz M. Detection, Diagnosis, and Monitoring of Early Caries: The Future of Individualized Dental Care. Diagnostics. 2023; 13(24):3649. https://doi.org/10.3390/diagnostics13243649
Chicago/Turabian StyleAbdelaziz, Marwa. 2023. "Detection, Diagnosis, and Monitoring of Early Caries: The Future of Individualized Dental Care" Diagnostics 13, no. 24: 3649. https://doi.org/10.3390/diagnostics13243649
APA StyleAbdelaziz, M. (2023). Detection, Diagnosis, and Monitoring of Early Caries: The Future of Individualized Dental Care. Diagnostics, 13(24), 3649. https://doi.org/10.3390/diagnostics13243649