Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images
Abstract
:1. Introduction
2. A Critical Review of Improved Entropies
- Entropies based on the gray-level co-occurrence matrix of an image;
- Entropies based on the gray-level variance of the neighborhood of a pixel;
- Entropy based on the Sobel gradient of a pixel;
- Entropy based on the local binary pattern of an image;
- Entropy based on the Laplacian pyramid of an image; and
- Entropy based on the distance between pixels of the same/different value.
2.1. Entropies Based on the Gray-Level Co-Occurrence Matrix of an Image
2.2. Entropies Based on the Gray-Level Variance of Neighborhoods of a Pixel
2.3. Entropy Based on the Sobel Gradient of a Pixel
2.4. Entropy Based on the Local Binary Pattern of an Image
- Read the gray value () of the pixel and that of the pixel’s eight immediate neighbors from the left top in clockwise order (denoted as ).
- Create an 8-digit binary number, , where () is a binary digit with a value of either 0 or 1.
- Compare each neighbor to the pixel; set if . Otherwise, set .
- Convert the binary number to its decimal equivalent, which is the LBP value of the pixel.
2.5. Entropy Based on the Laplacian Pyramid of an Image
2.6. Entropy Based on the Average Distance between Same/Different-Value Pixels
3. Design of the Thermodynamics-Based Evaluation
3.1. A Thermodynamics-Based Strategy for Generating Testing Images
- Get the size, , of the seed image, which is taken as the output of Iteration 0.
- Randomly select pixels in the resultant image of the previous iteration.
- Exchange the position of each of the selected pixels and a randomly selected neighboring pixel.
- Output the resultant image as the result of the current iteration of mixing.
- Go back to Step 2 until the number of iterations reaches some threshold.
3.2. A Set of Testing Images Generated Using the Proposed Strategy
- Set its initial value to a large enough number (e.g., 100,000) to obtain numerous outputs.
- View the outputs of the 10,000 -th () iterations with the naked eye, and select one from these viewed outputs as the “total disorder”.
- Set the final value of the threshold to the number of iterations of the “total disorder”.
3.3. Criteria and Measures for Evaluation
4. Evaluation and Results Analysis
4.1. Methods to be Evaluated: Original and Modified
4.2. Results of the Evaluation
4.3. Analysis of the Results on Validity
4.4. Analysis of the Results on Reliability
4.5. Analysis of the Results on Ability
5. Discussion
5.1. Effects of Modifications on Improved Shannon Entropies
5.2. Computational Efficiency of Various Improved Shannon Entropies
5.3. Nature of the Best-Performed Method: Entropy or Not
5.4. Thermodynamic Entropy and Fractal Dimension
6. Conclusions
- Among all the variants of Shannon entropy, only the two based on LBP (local binary pattern)—Qu12-L and Qu12-L′—are invalid to quantify the configurational information of an image. However, it is worth noting that, although valid with the testing images in this study, Qu12-V, Qu12-V-5, and Qu12-G may be invalid with other images due to dividing by zero.
- Variants of Shannon entropy differ significantly in terms of reliability. The most reliable variant of Shannon entropy is Cl05, with an -value of 2.50. In contrast, the least reliable one is RM06, with an -value of 331.23 that is 131 times larger than that of Cl05.
- In terms of the ability to quantify configurational information (i.e., to capture configurational disorder), the best two variants of Shannon entropy are Cl05 (with an -value of 0.82) and RM06 (with an -value of 0.88). As for the other variants, they have a similar performance with -values ranging from 0.96 to 0.98.
- Cl05 is the best variant of Shannon entropy for quantifying the configurational information of images according to the three criteria defined in this study. However, from a theoretical point of view, it is debatable whether the nature of Cl05 is still in Shannon entropy or not; from a technical point of view, practical applications of Cl05 in remote sensing image processing may be limited by its high computational complexity.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, J.; Zeng, H.; Ghadiyaram, D.; Lee, S.; Zhang, L.; Bovik, A.C. Deep convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment. IEEE Signal Proc. Mag. 2017, 34, 130–141. [Google Scholar] [CrossRef]
- Guan, J.W.; Yi, S.; Zeng, X.Y.; Cham, W.K.; Wang, X.G. Visual importance and distortion guided deep image quality assessment framework. IEEE Trans. Multimed. 2017, 19, 2505–2520. [Google Scholar] [CrossRef]
- Brankov, J.G.; Yang, Y.Y.; Wei, L.Y.; El Naqa, I.; Wernick, M.N. Learning a channelized observer for image quality assessment. IEEE Trans. Med. Imaging 2009, 28, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Appina, B.; Khan, S.; Channappayya, S.S. No-reference stereoscopic image quality assessment using natural scene statistics. Signal Proc. Image Commun. 2016, 43, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.P.; Qi, G.Q.; Zhu, Z.Q.; Chai, Y. A novel geometric dictionary construction approach for sparse representation based image fusion. Entropy 2017, 19, 306. [Google Scholar] [CrossRef]
- Saleem, A.; Beghdadi, A.; Boashash, B. Image fusion-based contrast enhancement. EURASIP J. Image Video Proc. 2012, 2012, 10. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Lu, L.G. Why is image quality assessment so difficult? In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 13–17 May 2002; pp. 3313–3316. [Google Scholar]
- Cadık, M. Perceptually Based Image Quality Assessment and Image Transformations. Ph.D. Thesis, Czech Technical University, Prague, Czech Republic, 2008. [Google Scholar]
- Liu, J.; Huang, J.Y.; Liu, S.G.; Li, H.L.; Zhou, Q.M.; Liu, J.C. Human visual system consistent quality assessment for remote sensing image fusion. ISPRS J. Photogramm. Remote Sens. 2015, 105, 79–90. [Google Scholar] [CrossRef]
- Masek, J.G.; Honzak, M.; Goward, S.N.; Liu, P.; Pak, E. Landsat-7 ETM+ as an observatory for land cover: Initial radiometric and geometric comparisons with Landsat-5 Thematic Mapper. Remote Sens. Environ. 2001, 78, 118–130. [Google Scholar] [CrossRef]
- Price, J.C. Comparison of the information content of data from the Landsat-4 Thematic Mapper and the Multispectral Scanner. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 272–281. [Google Scholar] [CrossRef]
- Niimi, T.; Maeda, H.; Ikeda, M.; Imai, K. Quantification of image quality using information theory. Australas. Phys. Eng. Sci. Med. 2011, 34, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Harrie, L.; Stigmar, H. An evaluation of measures for quantifying map information. ISPRS J. Photogramm. Remote Sens. 2010, 65, 266–274. [Google Scholar] [CrossRef]
- Lin, Z.J.; Deng, B. Quantifying degrees of information in remote sensing imagery. In Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, 25–27 June 2008; pp. 201–205. [Google Scholar]
- Lin, Z.J.; Yao, N.; Deng, B.; Wang, C.Z.; Wang, J.H. Research on differential coding method for satellite remote sensing data compression. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B7, 217–222. [Google Scholar] [CrossRef]
- Cheng, C.X.; Lu, F.; Niu, F.Q. Verification of raster-based map information measurement. Geo-Inf. Sci. 2006, 8, 127–130. [Google Scholar]
- Wu, H.Y.; Zhu, H.J.; Liu, Y. A raster-based map information measurement for QoS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, XXXV, 365–370. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Noorizadeh, S.; Shakerzadeh, E. Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys. Chem. Chem. Phys. 2010, 12, 4742–4749. [Google Scholar] [CrossRef] [PubMed]
- Gregori-Puigjané, E.; Mestres, J. SHED: Shannon entropy descriptors from topological feature distributions. J. Chem. Inf. Model. 2006, 46, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Pielou, E. The use of information theory in the study of the diversity of biological populations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; pp. 163–177. [Google Scholar]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Feixas, M.; Bardera, A.; Rigau, J.; Xu, Q.; Sbert, M. Information Theory Tools for Image Processing; Morgan & Claypool Publishers: San Rafael, CA, USA, 2014; pp. 1–164. [Google Scholar]
- Roberts, J.W.; van Aardt, J.; Ahmed, F. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2008, 2, 023522. [Google Scholar]
- Huang, J.Y.; Zhou, Q.M.; Wu, Z.F. Delineating urban fringe area by land cover information entropy: An empirical study of guangzhou-foshan metropolitan area, China. ISPRS Int. J. Geo-Inf. 2016, 5, 59. [Google Scholar] [CrossRef]
- Hu, L.J.; He, Z.Y.; Liu, J.P.; Zheng, C.H. Method for measuring the information content of terrain from digital elevation models. Entropy 2015, 17, 7021–7051. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, G.M.; He, Z.Y.; Yu, H.L.; Bai, R.; Yang, L.R.; Wu, D. Entropies of the Chinese land use/cover change from 1990 to 2010 at a county level. Entropy 2017, 19, 51. [Google Scholar] [CrossRef]
- Goodchild, M.F. The nature and value of geographic information. In Foundations of Geographic Information Science; Duckham, M., Goodchild, M.F., Worboys, M., Eds.; Taylor & Francis: New York, NY, USA, 2003; pp. 19–31. [Google Scholar]
- Tobler, W.R. Introductory comments on information theory and cartography. Cartogr. Perspect. 1997, 27, 4–7. [Google Scholar] [CrossRef]
- Cushman, S.A. Calculating the configurational entropy of a landscape mosaic. Landsc. Ecol. 2016, 31, 481–489. [Google Scholar] [CrossRef]
- Li, Z.L.; Huang, P.Z. Quantitative measures for spatial information of maps. Int. J. Geogr. Inf. Sci. 2002, 16, 699–709. [Google Scholar] [CrossRef]
- Li, Z.L.; Liu, Q.L.; Gao, P.C. Entropy-based cartographic communication models: Evolution from special to general cartographic information theory. Acta Geod. Et Cartogr. Sin. 2016, 45, 757–767. [Google Scholar]
- Sabuncu, M.R. Entropy-Based Image Registration. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2004. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Claramunt, C. A spatial form of diversity. In Spatial Information Theory; Cohn, A.G., Mark, D.M., Eds.; Springer: Heidelberg/Berlin, Germany, 2005; pp. 218–231. [Google Scholar]
- Quweider, M.K. Spatial entropy-based cost function for gray and color Image segmentation with dynamic optimal partitioning. Int. J. Comput. Sci. Netw. Secur. 2012, 12, 64–75. [Google Scholar]
- Zhong, Y.F.; Cao, Q.; Zhao, J.; Ma, A.; Zhao, B.; Zhang, L.P. Optimal decision fusion for urban land-use/land-cover classification based on adaptive differential evolution using hyperspectral and LiDAR data. Remote Sens. 2017, 9, 868. [Google Scholar] [CrossRef]
- Ciriza, R.; Sola, I.; Albizua, L.; Álvarez-Mozos, J.; González-Audícana, M. Automatic detection of uprooted orchards based on orthophoto texture analysis. Remote Sens. 2017, 9, 492. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. Entropic thresholding. Signal Proc. 1989, 16, 97–108. [Google Scholar] [CrossRef]
- Abutaleb, A.S. Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Proc. 1989, 47, 22–32. [Google Scholar] [CrossRef]
- Brink, A.D. Minimum spatial entropy threshold selection. IEEE Proc.-Vis. Image Signal Proc. 1995, 142, 128–132. [Google Scholar] [CrossRef]
- Mäenpää, T. The Local Binary Pattern Approach to Texture Analysis: Extensions and Applications; Oulu University Press: Oulu, Finland, 2003. [Google Scholar]
- Brink, A.D. Using spatial information as an aid to maximum entropy image threshold selection. Pattern Recognit. Lett. 1996, 17, 29–36. [Google Scholar] [CrossRef]
- Dondes, P.A.; Rosenfeld, A. Pixel classification based on gray level and local “busyness”. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 79–84. [Google Scholar] [CrossRef]
- Chen, M.; Habib, A.; He, H.Q.; Zhu, Q.; Zhang, W. Robust feature matching method for SAR and optical images by using Gaussian-Gamma-Shaped bi-windows-based descriptor and geometric constraint. Remote Sens. 2017, 9, 882. [Google Scholar] [CrossRef]
- Susaki, J. Segmentation of shadowed buildings in dense urban areas from aerial photographs. Remote Sens. 2012, 4, 911–933. [Google Scholar] [CrossRef] [Green Version]
- Sobel, I. History and Definition of the Sobel Operator. Available online: https://www.researchgate.net/ publication/210198558 (accessed on 8 November 2017).
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.J.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Su, L.H.; Gibeaut, J. Using UAS hyperspatial RGB imagery for identifying beach zones along the South Texas Coast. Remote Sens. 2017, 9, 159. [Google Scholar] [CrossRef]
- Rakshit, S.; Mishra, A. Estimation of structural information content in images. In Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, 13–16 January 2006; pp. 265–275. [Google Scholar]
- Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Cao, X.H.; Chen, S.T.; Hu, F. A multi-resolution blending considering changed regions for Orthoimage mosaicking. Remote Sens. 2016, 8, 842. [Google Scholar] [CrossRef]
- Jähne, B. Digital Image Processing, 6th ed.; Springer: Heidelberg/Berlin, Germany, 2005. [Google Scholar]
- Sui, D.Z. Tobler’s first law of geography: A big idea for a small world? Ann. Assoc. Am. Geogr. 2004, 94, 269–277. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Leibovici, D.G.; Claramunt, C.; Le Guyader, D.; Brosset, D. Local and global spatio-temporal entropy indices based on distance-ratios and co-occurrences distributions. Int. J. Geogr. Inf. Sci. 2014, 28, 1061–1084. [Google Scholar] [CrossRef]
- Li, X.; Claramunt, C. A spatial entropy-based decision tree for classification of geographical information. Trans. GIS 2006, 10, 451–467. [Google Scholar] [CrossRef]
- Wang, B.J.; Wang, X. Spatial entropy-based clustering for mining data with spatial correlation. In Advances in Knowledge Discovery and Data Mining; Huang, J.Z., Cao, L.B., Srivastava, J., Eds.; Springer: Heidelberg/Berlin, Germany, 2011; pp. 196–208. [Google Scholar]
- Kim, D.-J.; Hensley, S.; Yun, S.-H.; Neumann, M. Detection of durable and permanent changes in urban areas using multitemporal polarimetric UAVSAR data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 267–271. [Google Scholar] [CrossRef]
- Zamburlin, P.; Lovisolo, D.; Ariano, P.; Panero, R.; Ferraro, M. A quantitative approach to the dynamics of neurite sprouting induced by a neurotrophic factor. J. Neurosci. Methods 2009, 185, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.L. Lectures on Matter and Equilibrium; W.A. Benjamin: New York, NY, USA, 1966. [Google Scholar]
- Gould, H.; Tobochnik, J. Statistical and Thermal Physics: With Computer Applications; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Agarwal, B.K.; Eisner, M. Statistical Mechanics, 2nd ed.; New Age International: New Delhi, India, 2007. [Google Scholar]
- Vonk, M.E.; Tripodi, T.; Epstein, I. Research Techniques for Clinical Social Workers; Columbia University Press: New York, NY, USA, 2007. [Google Scholar]
- Song, W.Z.; Jia, H.F.; Huang, J.F.; Zhang, Y.Y. A satellite-based geographically weighted regression model for regional PM 2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Finkelstein, M.O. Basic Concepts of Probability and Statistics in the Law; Springer: New York, NY, USA, 2009. [Google Scholar]
- Bloom, M.; Fischer, J.; Orme, J.G. Evaluating Practice: Guidelines for the Accountable Professional; Allyn and Bacon: Boston, MA, USA, 2006. [Google Scholar]
- Rossi, P.H.; Lipsey, M.W.; Freeman, H.E. Evaluation: A Systematic Approach; SAGE Publications: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Joiner, A.; Reynard, S.; Mann, D. Scatter Plots: Plain and Simple; Oriel Incorporated: Madison, WI, USA, 1995. [Google Scholar]
- Gao, P.C.; Liu, Z.; Tian, K.; Liu, G. Characterizing traffic conditions from the perspective of spatial-temporal heterogeneity. ISPRS Int. J. Geo-Inf. 2016, 5, 34. [Google Scholar] [CrossRef]
- Gao, P.C.; Zhang, H.; Li, Z.L. An efficient analytical method for computing the Boltzmann entropy of a landscape gradient. Trans. GIS 2018, in press. [Google Scholar]
- Thess, A. The Entropy Principle: Thermodynamics for the Unsatisfied; Springer: Heidelberg/Berlin, Germany, 2011. [Google Scholar]
- Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. In Kinetische Theorie II; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1970; pp. 115–225. (in German) [Google Scholar]
- Chen, Y.G. Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality. Chaos Sol. Fract. 2009, 40, 1766–1778. [Google Scholar] [CrossRef]
- Chen, Y.G. A new model of urban population density indicating latent fractal structure. Int. J. Urban Sust. Dev. 2010, 1, 89–110. [Google Scholar] [CrossRef]
- Bailey, K.D. Entropy systems theory. In Systems Science and Cybernetics; Parra-Luna, F., Ed.; Eolss Publishers/UNESCO: Oxford, UK, 2009; Volume 1, pp. 149–166. [Google Scholar]
- Bekenstein, J.D. Information in the holographic universe. Sci. Am. 2003, 289, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.G. Multi-scaling allometric analysis for urban and regional development. Phys. A Stat. Mech. Appl. 2017, 465, 673–689. [Google Scholar] [CrossRef]
- Chen, Y.G. Power-law distributions based on exponential distributions: Latent scaling, spurious Zipf’s law, and fractal rabbits. Fractals 2015, 23, 1550009. [Google Scholar] [CrossRef]
- Chen, Y.G. Defining urban and rural regions by multifractal spectrums of urbanization. Fractals 2016, 24, 1650004. [Google Scholar] [CrossRef]
- Chen, Y.G. The rank-size scaling law and entropy-maximizing principle. Phys. A Stat. Mech. Appl. 2012, 391, 767–778. [Google Scholar] [CrossRef]
- Chen, Y.G.; Zhou, Y.X. Scaling laws and indications of self-organized criticality in urban systems. Chaos Sol. Fract. 2008, 35, 85–98. [Google Scholar] [CrossRef]
- Liu, G.; He, J.; Luo, K.T.; Gao, P.C.; Ma, L. Scale-free networks of the earth’s surface. Int. J. Mod. Phys. B 2016, 30, 1650143. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Z.L. Fractality and self-similarity in the structure of road networks. Ann. Assoc. Am. Geogr. 2012, 102, 350–365. [Google Scholar] [CrossRef]
- Chen, Y.G.; Wang, J.J.; Feng, J. Understanding the fractal dimensions of urban forms through spatial entropy. Entropy 2017, 19, 600. [Google Scholar] [CrossRef]
- Chen, Y.G.; Wang, J.J. Multifractal characterization of urban form and growth: The case of Beijing. Environ. Plan. B Plan. Des. 2013, 40, 884–904. [Google Scholar] [CrossRef]
- Gao, P.C.; Liu, Z.; Xie, M.H.; Tian, K.; Liu, G. CRG index: A more sensitive ht-index for enabling dynamic views of geographic features. Prof. Geogr. 2016, 68, 533–545. [Google Scholar] [CrossRef]
- Gao, P.C.; Liu, Z.; Liu, G.; Zhao, H.R.; Xie, X.X. Unified metrics for characterizing the fractal nature of geographic features. Ann. Am. Assoc. Geogr. 2017, 107, 1315–1331. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, D. How complex is a fractal? Head/tail breaks and fractional hierarchy. J. Geovis. Spat. Anal. 2018, in press. [Google Scholar]
- Jiang, B.; Yin, J.J. Ht-index for quantifying the fractal or scaling structure of geographic features. Ann. Assoc. Am. Geogr. 2014, 104, 530–540. [Google Scholar] [CrossRef]
- Chang, C.-I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef]
- Guo, B.F.; Gunn, S.R.; Damper, R.I.; Nelson, J.D. Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 2006, 3, 522–526. [Google Scholar] [CrossRef]
- MartÍnez-UsÓ, A.; Pla, F.; Sotoca, J.M.; García-Sevilla, P. Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4158–4171. [Google Scholar] [CrossRef]
- Cao, X.H.; Han, J.G.; Yang, S.Y.; Tao, D.C.; Jiao, L.C. Band selection and evaluation with spatial information. Int. J. Remote Sens. 2016, 37, 4501–4520. [Google Scholar] [CrossRef]
- Qin, C.Z.; Zhan, L.J.; Zhu, A.X.; Zhou, C.H. A strategy for raster-based geocomputation under different parallel computing platforms. Int. J. Geogr. Inf. Sci. 2014, 28, 2127–2144. [Google Scholar] [CrossRef]
- Gao, P.C.; Liu, Z.; Tian, K.; Xie, M.H. A comparative study of geographical information services in public and private clouds. Asian J. Geoinf. 2016, 16, 17–24. [Google Scholar]
- Gao, P.C.; Liu, Z.; Xie, M.H.; Tian, K. Low-cost cloud computing solution for geo-information processing. J. Cent. South Univ. 2016, 23, 3217–3224. [Google Scholar] [CrossRef]
- Gao, P.C.; Liu, Z.; Han, F.; Tang, L.; Xie, M.H. Accelerating the computation of multi-scale visual curvature for simplifying a large set of polylines with Hadoop. GIS Remote Sens. 2015, 52, 315–331. [Google Scholar] [CrossRef]
- Gao, P.C.; Zhang, H.; Li, Z.L. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc. Ecol. 2017, 32, 1133–1146. [Google Scholar] [CrossRef]
- Cushman, S.A. Thermodynamics in landscape ecology: The importance of integrating measurement and modeling of landscape entropy. Landsc. Ecol. 2015, 30, 7–10. [Google Scholar] [CrossRef]
No. | Entropy | No. | Entropy | No. | Entropy | No. | Entropy |
---|---|---|---|---|---|---|---|
1 | Sh48 | 7 | Ha73-LU | 13 | Br96 | 20 | Br96-5 |
2 | Ha73-R | 8 | Ha73-U | 14 | Qu12-V | 22 | Qu12-V′ |
3 | Ha73-RD | 9 | Ha73-RU | 15 | Qu12-G | 16 | Qu12-G′ |
4 | Ha73-D | 10 | PP89 | 19 | Qu12-L | 18 | Qu12-L′ |
5 | Ha73-LD | 11 | Ab89 | 21 | RM06 | 23 | Qu12-V-5 |
6 | Ha73-L | 12 | Br95 | 17 | Cl05 | 24 | Qu12-V-5′ |
Entropy | Entropy | ||||||
---|---|---|---|---|---|---|---|
Sh48 | No | 1 | N/A | Br96 | Yes | 9.88 | 0.98074 |
Ha73-R | Yes | 41.21 | 0.96215 | Qu12-V | Yes | 5.73 | 0.97068 |
Ha73-RD | Yes | 51.70 | 0.95573 | Qu12-G | Yes | 23.33 | 0.96266 |
Ha73-D | Yes | 43.96 | 0.95859 | Qu12-L | No | N/A | N/A |
Ha73-LD | Yes | 46.67 | 0.96023 | RM06 | Yes | 331.23 | 0.88170 |
Ha73-L | Yes | 41.21 | 0.96215 | Cl05 | Yes | 2.50 | 0.82325 |
Ha73-LU | Yes | 51.70 | 0.95573 | Br96-5 | Yes | 6.46 | 0.98236 |
Ha73-U | Yes | 43.96 | 0.95859 | Qu12-V′ | Yes | 5.76 | 0.97046 |
Ha73-RU | Yes | 46.67 | 0.96023 | Qu12-G′ | Yes | 24.13 | 0.96139 |
PP89 | Yes | 25.91 | 0.97016 | Qu12-L′ | No | 77.09 | 0.96572 |
Ab89 | Yes | 22.43 | 0.95831 | Qu12-V-5 | Yes | 3.03 | 0.96644 |
Br95 | Yes | 21.46 | 0.97460 | Qu12-V-5′ | Yes | 3.04 | 0.96632 |
Ranking | Entropy | Ranking | Entropy | Ranking | Entropy | Ranking | Entropy |
---|---|---|---|---|---|---|---|
1 | Cl05 | 7 | Br96 | 13 | Ha73-R | 19 | Ha73-RD |
2 | Qu12-V-5 | 8 | Br95 | 13 | Ha73-L | 19 | Ha73-LU |
3 | Qu12-V-5′ | 9 | Ab89 | 15 | Ha73-D | 21 | Qu12-L′ |
4 | Qu12-V | 10 | Qu12-G | 15 | Ha73-U | 22 | RM06 |
5 | Qu12-V′ | 11 | Qu12-G′ | 17 | Ha73-LD | N/A | Qu12-L |
6 | Br96-5 | 12 | PP89 | 17 | Ha73-RU |
Ranking | Entropy | Ranking | Entropy | Ranking | Entropy | Ranking | Entropy |
---|---|---|---|---|---|---|---|
1 | Cl05 | 6 | Ha73-U | 13 | Qu12-G | 19 | Qu12-V |
2 | RM06 | 8 | Ha73-LD | 14 | Qu12-L′ | 20 | Br95 |
3 | Ha73-RD | 8 | Ha73-RU | 15 | Qu12-V-5′ | 21 | Br96 |
3 | Ha73-LU | 10 | Qu12-G′ | 16 | Qu12-V-5 | 22 | Br96-5 |
5 | Ab89 | 11 | Ha73-R | 17 | PP89 | N/A | Qu12-L |
6 | Ha73-D | 11 | Ha73-L | 18 | Qu12-V′ |
Entropy | Image 1 | Image 2 | Entropy | Image 1 | Image 2 |
---|---|---|---|---|---|
Cl05 | 0.0179 | 0.0186 | Qu12-G | N/A | N/A |
RM06 | 4.9112 | 4.4375 | Qu12-L′ | 0.2306 | 0.2306 |
Ha73-RD | 0.2874 | 0.2874 | Qu12-V-5′ | 1.7362 | 1.7362 |
Ha73-LU | 0.2874 | 0.2874 | Qu12-V-5 | 1.1636 | 1.1636 |
Ab89 | 0.7315 | 0.7315 | PP89 | 0.2614 | 0.2614 |
Ha73-D | 0.2775 | 0.2775 | Qu12-V′ | 1.6104 | 1.6104 |
Ha73-U | 0.2775 | 0.2775 | Qu12-V | 0.9636 | 0.9636 |
Ha73-LD | 0.2874 | 0.2874 | Br95 | 0.2738 | 0.2738 |
Ha73-RU | 0.2874 | 0.2874 | Br96 | 7.6384 | 7.6384 |
Qu12-G′ | 1.8581 | 1.8581 | Br96-5 | 8.1230 | 8.1230 |
Ha73-R | 0.2472 | 0.2472 | Qu12-L | N/A | N/A |
Ha73-L | 0.2472 | 0.2472 |
Entropy | Time/s | Entropy | Time/s | Entropy | Time/s | Entropy | Time/s |
---|---|---|---|---|---|---|---|
Sh48 | 0.2 | Ha73-LU | 0.9 | Br96 | 2.2 | Br96-5 | 3.5 |
Ha73-R | 0.9 | Ha73-U | 0.9 | Qu12-V | 2.6 | Qu12-V′ | 2.7 |
Ha73-RD | 1.0 | Ha73-RU | 0.9 | Qu12-G | 5.2 | Qu12-G′ | 4.9 |
Ha73-D | 0.9 | PP89 | 0.5 | Qu12-L | 3.1 | Qu12-L′ | 3.1 |
Ha73-LD | 1.0 | Ab89 | 0.6 | RM06 | 4.7 | Qu12-V-5 | 4.0 |
Ha73-L | 0.9 | Br95 | 0.6 | Cl05 | 3651.4 | Qu12-V-5′ | 4.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Li, Z.; Zhang, H. Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images. Entropy 2018, 20, 19. https://doi.org/10.3390/e20010019
Gao P, Li Z, Zhang H. Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images. Entropy. 2018; 20(1):19. https://doi.org/10.3390/e20010019
Chicago/Turabian StyleGao, Peichao, Zhilin Li, and Hong Zhang. 2018. "Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images" Entropy 20, no. 1: 19. https://doi.org/10.3390/e20010019
APA StyleGao, P., Li, Z., & Zhang, H. (2018). Thermodynamics-Based Evaluation of Various Improved Shannon Entropies for Configurational Information of Gray-Level Images. Entropy, 20(1), 19. https://doi.org/10.3390/e20010019