Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Consumer Sensorial Perceptions during Meatball Consumption
2.2. Raw Materials for Meatball Preparation
2.3. Meatball Preparation
2.4. Measurement of Physicochemical and Microbiological Parameters
2.5. Meatball Sensorial Profile
2.6. Consumer Sensorial Evaluation of Meatballs
2.7. Statistical Analysis
3. Results
3.1. Consumer Sensorial Comparison of Meatball Consumption
3.2. Physicochemical, Microbiological Characteristics and Sensorial Profiles (Trained Panelists) of Four Meatball Formulations (AC, AI, AF, AM)
3.3. Selected Meatball (AI) Sensorial Evaluation with Consumers (Home-Based Test)
3.4. Nutritional Composition of Selected Meatballs (AI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Guidelines: Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children. 2018. Available online: https://www.who.int/docs/default-source/healthy-diet/healthy-diet-fact-sheet-394.pdf?sfvrsn=69f1f9a1_2&download=true (accessed on 22 June 2021).
- Ministry of Health and Social Protection (Colombia). Resolution 810 of 2021. Available online: https://www.minsalud.gov.co/Normatividad_Nuevo/ResoluciónNo.810de2021.pdf (accessed on 22 October 2021).
- Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.D. Strategies to improve meat products’ quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, S.Y.; Yang, D.J.; Chang, M.H.; Chen, Y.C. Alleviative effects of litchi (Litchi chinensis Sonn.) flower on lipid peroxidation and protein degradation in emulsified pork meatballs. J. Food Drug Anal. 2015, 23, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium. IOP Conf. Ser. Earth Environ. Sci. 2017, 85. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, A.M.B.; de Araujo Alves, R.; Madeira, D.S.S.; Santos, R.M.; Pereira, A.L.F.; de Oliveira Lemos, T.; Abreu, V.K.G. Storage of beef burgers containing fructooligosaccharides as fat replacer and potassium chloride as replacing sodium chloride. J. Food Sci. Technol. 2020, 57, 3232–3243. [Google Scholar] [CrossRef]
- Gupta, R.; Thind, S.S.; Kaur, A.; Bhise, S. Development of Chicken Meat Cutlets Incorporating Carrots and Oats as Functional Ingredients. Int. J. Food Ferment. Technol. 2017, 7, 41. [Google Scholar] [CrossRef]
- Hartmann, G.; Teixeira, F.; Soares, J.M.; da Silva, K.A.; Schwarz, K.; Schiessel, D.L.; Novello, D. Effect of fat replacement by fructooligosaccharide in hamburger: Physicochemical, technological and sensorial analysis. Int. J. Innov. Educ. Res. 2020, 8, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Glisic, M.; Baltic, M.; Glisic, M.; Trbovic, D.; Jokanovic, M.; Parunovic, N.; Dimitrijevic, M.; Suvajdzic, B.; Boskovic, M.; Vasilev, D. Inulin-based emulsion-filled gel as a fat replacer in prebiotic- and PUFA-enriched dry fermented sausages. Int. J. Food Sci. Technol. 2019, 54, 787–797. [Google Scholar] [CrossRef]
- Berizi, E.; Shekarforoush, S.S.; Mohammadinezhad, S.; Hosseinzadeh, S.; Farahnaki, A. The use of inulin as fat replacer and its effect on texture and sensory properties of emulsion type sausages. Iran. J. Vet. Res. 2017, 18, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Afshari, R.; Hosseini, H.; Mousavi Khaneghah, A.; Khaksar, R. Physico-chemical properties of functional low-fat beef burgers: Fatty acid profile modification. LWT Food Sci. Technol. 2017, 78, 325–331. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Healthier lipid combination as functional ingredient influencing sensory and technological properties of low-fat frankfurters. Eur. J. Lipid Sci. Technol. 2010, 112, 859–870. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Ruiz-Carrascal, J.; Jiménez-Martín, E.; Solomando, J.C.; Antequera, T. Improving the lipid profile of ready-to-cook meat products by addition of omega-3 microcapsules: Effect on oxidation and sensory analysis. J. Sci. Food Agric. 2018, 98, 5302–5312. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz-Carrascal, J.; Solomando, J.C.; Antequera, T. Strategies for Enrichment in ω-3 Fatty Acids Aiming for Healthier Meat Products. Food Rev. Int. 2019, 35, 485–503. [Google Scholar] [CrossRef]
- Liu, R.; Wang, N.; Li, Q.; Zhang, M. Comparative studies on physicochemical properties of raw and hydrolyzed oat β-glucan and their application in low-fat meatballs. Food Hydrocoll. 2015, 51, 424–431. [Google Scholar] [CrossRef]
- Schmiele, M.; Nucci Mascarenhas, M.C.C.; da Silva Barretto, A.C.; Rodrigues Pollonio, M.A. Dietary fiber as fat substitute in emulsified and cooked meat model system. LWT Food Sci. Technol. 2015, 61, 105–111. [Google Scholar] [CrossRef]
- Abbasi, E.; Amini Sarteshnizi, R.; Ahmadi Gavlighi, H.; Nikoo, M.; Azizi, M.H.; Sadeghinejad, N. Effect of partial replacement of fat with added water and tragacanth gum (Astragalus gossypinus and Astragalus compactus) on the physicochemical, texture, oxidative stability, and sensory property of reduced fat emulsion type sausage. Meat Sci. 2019, 147, 135–143. [Google Scholar] [CrossRef]
- Carvalho, L.T.; Pires, M.A.; Baldin, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Rodrigues, I.; Polizer, Y.J.; de Mello, J.L.M.; Lapa-Guimarães, J.; Trindade, M.A. Partial replacement of meat and fat with hydrated wheat fiber in beef burgers decreases caloric value without reducing the feeling of satiety after consumption. Meat Sci. 2019, 147, 53–59. [Google Scholar] [CrossRef]
- Soltanizadeh, N.; Ghiasi-Esfahani, H. Qualitative improvement of low meat beef burger using Aloe vera. Meat Sci. 2014, 99, 75–80. [Google Scholar] [CrossRef]
- Alaei, F.; Hojjatoleslamy, M.; Hashemi Dehkordi, S.M. The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages. Food Sci. Nutr. 2018, 6, 512–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menegas, L.Z.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Effect of adding inulin as a partial substitute for corn oil on the physicochemical and microbiological characteristics during processing of dry-fermented chicken sausage. J. Food Process. Preserv. 2017, 41, 1–7. [Google Scholar] [CrossRef]
- Balestra, F.; Bianchi, M.; Petracci, M. Applications in meat products. In Dietary Fiber: Properties, Recovery, and Applications; Galanakis, C., Ed.; Academic Press: London, UK, 2019; ISBN 9780128164952. [Google Scholar]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. Technological strategies to produce functional meat burgers. LWT Food Sci. Technol. 2015, 62, 697–703. [Google Scholar] [CrossRef]
- Rodriguez Furlán, L.T.; Padilla, A.P.; Campderrós, M.E. Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Sci. 2014, 96, 762–768. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Hosseini, H. An overview of the functionality of inulin in meat and poultry products. Nutr. Food Sci. 2018, 48, 819–835. [Google Scholar] [CrossRef]
- Han, M.; Bertram, H.C. Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Sci. 2017, 133, 159–165. [Google Scholar] [CrossRef]
- Öztürk, B.; Serdaroğlu, M. A Rising Star Prebiotic Dietary Fiber: Inulin and Recent Applications in Meat Products. J. Food Health Sci. 2016, 3, 12–20. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Bekhit, A.; Holman, B.; Jayasundera, M.; Lewandowski, P.; Dunshea, F.R.; Hopkins, D.L.; Gill, H. Use of plant materials to enhance the nutritional appeal of processed meat products. In Advances in Meat Processing Technology; Alaa El-Din, A.B., Ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 604. ISBN 1498700489,978-1-4987-0048-1. [Google Scholar]
- Kehlet, U.; Pagter, M.; Aaslyng, M.D.; Raben, A. Meatballs with 3% and 6% dietary fibre from rye bran or pea fibre—Effects on sensory quality and subjective appetite sensations. Meat Sci. 2017, 125, 66–75. [Google Scholar] [CrossRef]
- Garmyin, A. Consumer Preferences and Acceptance of Meat Products. Kirk-Othmer Encycl. Chem. Technol. 2020, 9, 708. [Google Scholar] [CrossRef]
- Schouteten, J.J.; De Steur, H.; De Pelsmaeker, S.; Lagast, S.; De Bourdeaudhuij, I.; Gellynck, X. An integrated method for the emotional conceptualization and sensory characterization of food products: The EmoSensory® Wheel. Food Res. Int. 2015, 78, 96–107. [Google Scholar] [CrossRef]
- Ventanas, S.; Gonzalez, A.; Estevez, M.; Carvalho, L. Innovation in sensory assessment of meat and meat products. In Meet Quality Analysis; Biswas, A., Mandal, P., Eds.; Academic Press: London, UK, 2020; pp. 393–418. [Google Scholar] [CrossRef]
- Polizer Rocha, Y.J.; de Noronha, R.L.F.; Trindade, M.A. Understanding the consumer’s perception of traditional frankfurters and frankfurters with healthy attributes through sorting task and hard laddering techniques. Meat Sci. 2019, 149, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Colombian Institute of Technical Standards and Certification. Food Industries. Chicken Carcasses and Chicken Cuts. Requirements. NTC 3644-2:2018. Available online: https://tienda.icontec.org/gp-industrias-alimentarias-pollo-en-canal-y-sus-cortes-requisitos-ntc3644-2-2018.html (accessed on 10 August 2021).
- Colombian Institute of Technical Standards and Certification. Guide for Evaluation and Prevention of Microorganisms in Food Industry. Listeria Monocytogenes. GTC 155:2007. Available online: https://tienda.icontec.org/gp-guia-para-la-evaluacion-y-prevencion-de-microorganismos-en-plantas-de-alimentos-listeria-monocytogenes-gtc155-2007.html (accessed on 1 August 2021).
- Ministry of Health and Social Protection (Colombia). Resolution 242 of 2013. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-0242-de-2013.pdf (accessed on 28 September 2021).
- Ministry of Health and Social Protection (Colombia). Decree 1500 of 2007. Available online: https://corponarino.gov.co/expedientes/juridica/2007decreto1500.pdf (accessed on 28 September 2021).
- Ministry of Health and Social Protection (Colombia). Resolution 4287 of 2007. Available online: https://www.minsalud.gov.co/Normatividad_Nuevo/RESOLUCIÓN4287DE2007.pdf (accessed on 18 August 2021).
- Colombian Institute of Technical Standards and Certification. Food Industries. Processed Meat Products Non Canned. NTC 1325:2008. Available online: https://tienda.icontec.org/gp-industrias-alimentarias-productos-carnicos-procesados-no-enlatados-ntc1325-2008.html (accessed on 1 January 2021).
- Association of Official Agricultural Chemists. Official Methods of Analysis International, Agricultural Chemicals, Contaminants, Drug. AOAC 978.19, 17th ed.; Association of Official Agricultural Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Association of Official Agricultural Chemists. PH of Acidified Foods. AOAC 981.12-1982. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1159 (accessed on 15 November 2021).
- Association of Official Agricultural Chemists. Meat and Meat Products—Preparation of Test Sample Procedure. AOAC 983.18-1983. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=558 (accessed on 4 March 2021).
- Colombian Institute of Technical Standards and Certification. Meat and Meat Products. Determination of Moisture Content. (Reference Methods and Rutine Method). NTC 1663:2009. Available online: https://tienda.icontec.org/gp-carne-y-productos-carnicos-metodos-de-determinacion-del-contenido-de-humedad-metodo-de-referencia-y-metodo-de-rutina-ntc1663-2009.html (accessed on 4 March 2021).
- International Organization for Standardization. Paints and Varnishes—Colorimetry—Part 2: Colour Measurement. ISO 7724-2:1984. Available online: https://www.iso.org/standard/14558.html (accessed on 1 September 2021).
- International Organization for Standardization. Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method (ISO 1871:2009). Available online: https://www.iso.org/standard/41320.html (accessed on 1 August 2021).
- Association of Official Agricultural Chemists. Fat (Crude) or Ether Extract in Animal Feed. AOAC 920.39-1920. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1088 (accessed on 1 August 2021).
- Association of Official Agricultural Chemists. Ash of Meat. AOAC 920.153-1920. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1694 (accessed on 1 August 2021).
- Association of Official Agricultural Chemists. Measurement of Fructan in Foods. Enzymatic/spe. AOAC 999.03-2005. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2385 (accessed on 20 March 2021).
- Association of Official Agricultural Chemists. Fatty Acids in Oils and Fats. Preparatio. AOAC 969.33-1969(1997). Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1733 (accessed on 1 August 2021).
- Association of Official Agricultural Chemists. Cholesterol in Multicomponent Foods. Gas Chromatographic Method. AOAC 976.26-1977(2010). Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2321 (accessed on 1 August 2021).
- Association of Official Agricultural Chemists. Calcium, Copper, Iron, Magnesium, Manganese, Hosphorus, Potassium, Sodium and Zinc. AOAC 984.27-1986. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2126 (accessed on 7 September 2021).
- Association of Official Agricultural Chemists. Microbiological Methods. AOAC 966.23-1989. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1922 (accessed on 15 June 2021).
- International Commission on Microbiological Specifications for Foods. Microorganisms in Foods 7: Microbiological Testing in Food Safety Management, 2nd ed.; Springer: Cham, Switzerland, 2018; ISBN 9783319684604. [Google Scholar]
- International Organization for Standardization. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other Species). UNE-EN ISO 6888-1:2000/A2:2019. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0061754 (accessed on 15 June 2021).
- International Organization for Standardization. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. UNE-EN ISO 6579-1:2017. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0058760 (accessed on 15 June 2021).
- International Organization for Standardization. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method. UNE-EN ISO 11290-1:2018. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0059546 (accessed on 15 June 2021).
- International Organization for Standardization. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. ISO 4832:2006. Available online: https://www.iso.org/standard/38282.html (accessed on 15 June 2021).
- International Organization for Standardization. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors (ISO 8586:2012). Available online: https://www.iso.org/standard/45352.html (accessed on 23 October 2021).
- Colombian Institute of Technical Standards and Certification. Sensory Analysis. Methodology. Method of Investigating Sensitivity of Taste. NTC 3915:2012. Available online: https://tienda.icontec.org/gp-analisis-sensorial-metodologia-metodo-para-investigar-la-sensibilidad-del-gusto-ntc3915-2012.html (accessed on 23 October 2021).
- Colombian Institute of Technical Standards and Certification. Sensory Analysis. Methodology. Initiation and Training of Assessors in the Detection and Recognition of Odours. NTC 4503:2011. Available online: https://tienda.icontec.org/gp-analisis-sensorial-metodologia-iniciacion-y-entrenamiento-de-evaluadores-en-la-deteccion-y-reconocimiento-de-olores-ntc4503-2011.html (accessed on 23 October 2021).
- Colombian Institute of Technical Standards and Certification. Sensory Analysis. Methodology. Ranking. NTC 3930:2015. Available online: https://tienda.icontec.org/gp-analisis-sensorial-metodologia-ordenamiento-de-acuerdo-con-un-criterio-especifico-ranking-ntc3930-2015.html (accessed on 23 October 2021).
- Colombian Institute of Technical Standards and Certification. Sensory Analysis—Guidelines for Use of Quantitative Response Scale. NTC 5328:2004. Available online: https://tienda.icontec.org/gp-analisis-sensorial-directrices-para-el-uso-de-escalas-de-respuesta-cuantitativas-ntc5328-2004.html (accessed on 23 October 2021).
- Kemp, S.; Hort, J.; Hollowood, T. Descriptive Analysis in Sensory Evaluation; Willey: West Sussex, UK, 2018; ISBN 9781118991671. [Google Scholar]
- Saldaña, E.; de Oliveira Garcia, A.; Selani, M.M.; Haguiwara, M.M.H.; de Almeida, M.A.; Siche, R.; Contreras-Castillo, C.J. A sensometric approach to the development of mortadella with healthier fats. Meat Sci. 2018, 137, 176–190. [Google Scholar] [CrossRef] [PubMed]
- de Quadros, D.A.; Rocha, I.F.d.O.; Ferreira, S.M.R.; Bolini, H.M.A. Low-sodium fish burgers: Sensory profile and drivers of liking. LWT Food Sci. Technol. 2015, 63, 236–242. [Google Scholar] [CrossRef]
- Concha-Meyer, A.A.; Durham, C.A.; Colonna, A.E.; Hasenbeck, A.; Sáez, B.; Adams, M.R. Consumer Response to Tomato Pomace Powder as an Ingredient in Bread: Impact of Sensory Liking and Benefit Information on Purchase Intent. J. Food Sci. 2019, 84, 3774–3783. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.; Jung, J.; Colonna, A.; Hasenbeck, A.; Gouw, V.; Zhao, Y. Quality and Consumer Acceptance of Berry Fruit Pomace–Fortified Specialty Mustard. J. Food Sci. 2018, 83, 1921–1932. [Google Scholar] [CrossRef]
- Naes, T.; Varela, P.; Berget, U. Individual Differences in Sensory and Consumer Science; Elsevier: Kidlington, UK, 2018; ISBN 9780081003947. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; ISBN 9781441964878. [Google Scholar]
- Euromonitor International Voice of the Industry: Food & Nutrition. 2021. Available online: https://www.euromonitor.com/voice-of-the-industry-food-and-nutrition/report (accessed on 28 October 2021).
- Mintel Global Consumer Trends. 2021. Available online: https://www.mintel.com/global-consumer-trends?utm_term=%2Bmintel%2Btrends&utm_campaign=SCH_(CP-LeadGen)_(G-LAR)_%7BBrand%7D_(D-All)_B_&utm_source=adwords&utm_medium=ppc&hsa_acc=9603040692&hsa_cam=10445632723&hsa_grp=104537149340&hsa_ad=445726075827&hsa_s (accessed on 28 October 2021).
- Aripin, N.; Huda, N. Quality Characteristics of Meatball Prepared from Different Ratios of Chicken and Duck Meat. Asia Pac. J. Sustain. Agric. Food Energy 2018, 6, 6–9. [Google Scholar] [CrossRef]
- Yeung, C.K.; Huang, S.C. Effects of Food Proteins on Sensory and Physico-Chemical Properties of Emulsified Pork Meatballs. J. Food Nutr. Res. 2018, 6, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, E.; García, M.L.; Toro, J.; Selgas, M.D. The effect of fructooligosaccharides on the sensory characteristics of cooked sausages. Meat Sci. 2004, 68, 87–96. [Google Scholar] [CrossRef]
- Franck, A. Technological functionality of inulin and oligofructose. Br. J. Nutr. 2002, 87, S287–S291. [Google Scholar] [CrossRef] [Green Version]
- Keenan, D.F.; Resconi, V.C.; Kerry, J.P.; Hamill, R.M. Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Sci. 2014, 96, 1384–1394. [Google Scholar] [CrossRef]
- Álvarez, D.; Barbut, S. Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Sci. 2013, 94, 320–327. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Galv o, M.T.E.L.; Picone, C.S.F.; Cunha, R.L.; Pollonio, M.A.R. Effect of prebiotic ingredients on the rheological properties and microstructure of reduced-sodium and low-fat meat emulsions. LWT Food Sci. Technol. 2015, 60, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.C.; Tsai, Y.F.; Chen, C.M. Effects of wheat fiber, oat fiber, and inulin on sensory and physico-chemical properties of Chinese-style sausages. Asian-Australas. J. Anim. Sci. 2011, 24, 875–880. [Google Scholar] [CrossRef]
- Menegas, L.Z.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Sci. 2013, 93, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Paglarini, C.; Vidal, V.A.S.; Ribeiro, W.; Badan Ribeiro, A.P.; Bernardinelli, O.D.; Herrero, A.M.; Ruiz-Capillas, C.; Sabadini, E.; Rodrigues Pollonio, M.A. Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage. J. Sci. Food Agric. 2021, 101, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Grossi, A.; Søltoft-Jensen, J.; Knudsen, J.C.; Christensen, M.; Orlien, V. Reduction of salt in pork sausages by the addition of carrot fibre or potato starch and high pressure treatment. Meat Sci. 2012, 92, 481–489. [Google Scholar] [CrossRef] [PubMed]
Perception of Healthiness | Probability of Consumption | Product Opinion | |||
---|---|---|---|---|---|
Unhealthy | Extremely healthy | Very unlikely to try | Very likely to try | I don’t like them at all | I like them very much |
1 | 7 | 1 | 7 | 1 | 7 |
Ingredients | Amount (g/100 g of Raw Meatballs) | |||
---|---|---|---|---|
AC | AF | AI | AM | |
Chicken breast | 30.0 | 30.0 | 30.0 | 30.0 |
Lean pork loin | 39.7 | 39.7 | 39.7 | 39.7 |
Pork fat | 16.5 | 6.0 | 6.0 | 6.0 |
Corn flour | 3.5 | 3.5 | 3.5 | 3.5 |
Water | 6.0 | 6.0 | 6.0 | 6.0 |
Fiber water | 0.0 | 7.0 | 7.0 | 7.0 |
FOS | 0.0 | 3.5 | 0.0 | 1.8 |
Inulin | 0.0 | 0.0 | 3.5 | 1.8 |
Salt | 1.0 | 1.0 | 1.0 | 1.0 |
Ground garlic | 0.7 | 0.7 | 0.7 | 0.7 |
Powdered onion | 0.5 | 0.5 | 0.5 | 0.5 |
Ground oregano | 0.2 | 0.2 | 0.2 | 0.2 |
Ground thyme | 0.1 | 0.1 | 0.1 | 0.1 |
Ground bay leaf | 0.1 | 0.1 | 0.1 | 0.1 |
Ground basil | 0.1 | 0.1 | 0.1 | 0.1 |
Ginger | 0.1 | 0.1 | 0.1 | 0.1 |
Ground black pepper | 0.1 | 0.1 | 0.1 | 0.1 |
Carl natural color | 1.5 | 1.5 | 1.5 | 1.5 |
Attribute | Definition | Reference |
---|---|---|
Surface homogeneity | Visual perception of homogeneity on the surface of the meatball. | Slight: Cracked meatball. Meatball formulation without corn flour High: Well-formed meatball. Meatball formulation with corn flour (8.5%) |
Meat aroma | Intensity of the aroma characteristic of chicken and pork. | None: Distilled water Strong: Chicken breast and/or pork loin cooked in water |
Spiced aroma | Intensity of the aroma characteristic of the spices (oregano, thyme, bay leaf, basil, pepper, garlic, onion). | None: Spiceless meatball Strong: Meatball with 3.5% spices |
Fatty aroma | Intensity of the aroma of fat. | None: Chicken breast cooked in water Strong: Fried bacon |
Meat flavor | Intensity of the flavors characteristic of chicken and pork. | None: Distilled water Strong: Chicken breast and/or pork loin boiled in water |
Spiced flavor | Intensity of the flavors characteristic of the spices (oregano, thyme, bay leaf, basil, garlic, onion). | None: Spiceless meatball Strong: Meatball with 3.5% spices |
Fatty flavor | Intensity of the flavor of fat. | None: Chicken breast boiled in water Strong: Fried bacon |
Salty flavor | Intensity of the salty flavor, associated with the presence of salt. | None: Saltless meatball Strong: Meatball with 2.5% salt |
Sweet flavor | Intensity of the sweet flavor. | None: Sugarless meatball Strong: Meatball with 14% sugar |
Firmness on cutting | Degree of meatball firmness when cut. This is closely related to cohesiveness. It is rated firm and cohesive when the meatball is cut with a knife without any loss of structure or crumbling. | Slight: Commercial meatball High: Meatball formulation with corn flour (8.5%) |
Juiciness | Perception of water absorbed or freed from the meatball during chewing. A succulent meatball frees a great deal of liquid as the product is chewed, and one that is not frees very little liquid, producing the sensation of a dry product. | Slight: Meatball formulation with corn flour (8.5%) High: Commercial meatball |
Cohesiveness | Degree to which the meatball stays together or compact. | Slight: Commercial meatball High: Meatball formulation with corn flour (8.5%) |
Fatty sensation | Amount of fat perceived in the mouth, especially on the palate and lips. | None: Chicken breast boiled in water High: Fried bacon |
Sample 1–Sample 2 | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. |
---|---|---|---|---|---|
Traditional-Added fiber | 314.540 | 28.965 | 10.859 | 0.000 | 0.000 |
Traditional-Reduce fat | 338.440 | 28.965 | 11.684 | 0.000 | 0.000 |
Traditional-Preservative free | 366.763 | 28.955 | 12.662 | 0.000 | 0.000 |
Added fiber-Reduce fat | 23.900 | 28.955 | 0.825 | 0.409 | 1.000 |
Added fiber-Preservative-free | −52.222 | 28.955 | −1.803 | 0.071 | 0.428 |
Reduce fat-Preservative free | −28.322 | 28.955 | −0.978 | 0.328 | 1.000 |
Sample 1–Sample 2 | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. |
---|---|---|---|---|---|
Traditional-Added fiber | 120.381 | 28.781 | 4.183 | 0.000 | 0.000 |
Traditional-Reduce fat | 166.140 | 28.738 | 5.781 | 0.000 | 0.000 |
Traditional-Preservative free | 221.446 | 28.803 | 7.688 | 0.000 | 0.000 |
Added fiber-Reduce fat | 45.759 | 28.781 | 1.590 | 0.112 | 0.671 |
Added fiber-Preservative-free | −101.065 | 28.846 | −3.504 | 0.000 | 0.003 |
Reduce fat-Preservative free | −55.306 | 28.803 | −1.920 | 0.055 | 0.329 |
Physicochemical Parameter | Treatment | |||
---|---|---|---|---|
AC | AI | AF | AM | |
Humidity (%wb) | 59.9 ± 0.000 a | 65.9 ± 0.000 b | 65.6 ± 0.002 b | 65.8 ± 0.001 b |
pH | 6.008 ± 0.010 a | 6.032 ± 0.004 a | 6.028 ± 0.002 a | 6.016 ± 0.007 a |
Water activity | 0.987 ± 0.000 a | 0.986 ± 0.001 a | 0.989 ± 0.001 a | 0.988 ± 0.001 a |
Kramer maximum force (N) | 248.275 ± 8.049 a | 220.689 ± 6.956 b | 217.305 ± 4.651 b | 219.618 ± 5.414 b |
Weight loss (%) | 11.96 ± 0.44 a | 17.16 ± 4.99 b | 17.59 ± 2.87 b | 19.50 ± 0.98 c |
Color | ||||
Crust | ||||
L* | 59.420 ± 0.183 a | 60.171 ± 0.037 a | 60.081 ± 0.037 a | 59.523 ± 0.085 a |
a* | 6.342 ± 0.009 a | 6.522 ± 0.0497 a | 6.411 ± 0.012 a | 6.513 ± 0.011 a |
b* | 13.136 ± 0.007 a | 12.793 ± 0.026 a | 12.428 ± 0.137 a | 12.723 ± 0.174 a |
C* | 14.591 ± 0.012 a | 14.369 ± 0.016 a | 13.985 ± 0.129 a | 14.297 ± 0.163 a |
h* | 64.167 ± 0.001 a | 62.950 ± 0.281 a | 62.699 ± 0.163 a | 62.893 ± 0.204 a |
Center | ||||
L* | 58.471 ± 0.014 a | 59.455 ± 0.172 b | 59.222 ± 0.007 b | 59.194 ± 0.021 b |
a* | 6.620 ± 0.007 a | 6.821 ± 0.057 a | 6.826 ± 0.064 a | 6.818 ± 0.016 a |
b* | 14.280 ± 0.158 a | 14.435 ± 0.040 a | 14.489 ± 0.064 a | 14.124 ± 0.131 a |
C* | 15.741 ± 0.166 a | 15.969 ± 0.003 a | 16.020 ± 0.093 a | 15.685 ± 0.126 a |
h* | 65.116 ± 0.0253 a | 64.709 ± 0.054 a | 64.770 ± 0.034 | 64.235 ± 0.046 a |
Proximate composition | ||||
Fat (g/100 g) | 15.715 ± 0.488 a | 6.65 ± 0.424 b | 6.145 ± 0.615 b | 7.095 ± 0.898 b |
Protein (g/100 g) | 18.205± 2.751 a | 17.940 ± 0.424 a | 18.815 ± 0.615 a | 18.320 ± 0.898 a |
Ash (g/100 g) | 1.455 ± 0.035 a | 1.450 ± 0.042 a | 1.45 ± 0.000 a | 1.51 ± 0.014 a |
Microbiological Analysis | NTC 1325 | Result |
---|---|---|
Mesophilic aerobes, CFU/g | <100,000 | 86.67 |
Coliforms, CFU/g | 100–500 | 13 |
S. aureus positive coagulase, CFU/g | <100 | <100 |
Salmonella detection, 25 g | None | None |
C. perfringens reducing sulphite spores, CFU/g | <10–100 | <10 |
Listeria monocytogenes, 25 g | None | None |
E. coli, g | <10 | None |
Variable | Level | % | Mean Drops | p-Value for the Endpoint | Penalties | p-Value for the Attribute |
---|---|---|---|---|---|---|
Very clear | 60.76 | 0.654 | 0.012 | |||
Color | JAR | 36.71 | 0.619 | 0.017 | ||
Very dark | 2.53 | −0.241 | ||||
Very soft | 34.18 | 0.399 | 0.139 | |||
Firmness | JAR | 64.56 | 0.403 | 0.128 | ||
Very firm | 1.27 | 0.510 | ||||
Not juicy | 26.58 | 1.197 | ||||
Juiciness | JAR | 48.10 | 0.865 | 0.000 | ||
Very juicy | 25.32 | 0.516 | ||||
Saltless | 26.58 | 0.947 | ||||
Saltiness | JAR | 72.15 | 0.887 | 0.001 | ||
Very salty | 1.27 | −0.386 | ||||
Very little | 30.38 | 0.784 | 0.006 | |||
Spiced flavor | JAR | 59.49 | 0.617 | 0.016 | ||
Very intense | 10.13 | 0.117 | ||||
Very low | 41.77 | 0.630 | 0.013 | |||
Fat sensation | JAR | 58.23 | ||||
Very high | 0.00 |
Nutrient | Amount |
---|---|
Protein (g/100 g) | 17.94 ± 0.0 |
Fat (g/100 g) | 6.65 ± 0.30 |
Saturated fat (g/100 g) | 2.325 ± 0.18 |
Monounsaturated (g/100 g) | 2.865 ± 0.03 |
Polyunsaturated (g/100 g) | 1.46 ± 0.10 |
Trans isomers (g/100 g) | 0.035 ± 0.02 |
Ash (g/100 g) | 1.44 ± 0.01 |
Iron (mg/100 g) | 1.615 ± 0.11 |
Cholesterol (mg/100 g) | 5.253 ± 3.50 |
Sodium (mg/100 g) | 340.75 ± 34.21 |
Fiber (g/100 g) | 0.56 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, L.; Quintero, N.; Ortiz, S.; Lopera, J.; Millán, P.; Rodríguez-Stouvenel, A. Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions. Foods 2022, 11, 1066. https://doi.org/10.3390/foods11081066
Montoya L, Quintero N, Ortiz S, Lopera J, Millán P, Rodríguez-Stouvenel A. Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions. Foods. 2022; 11(8):1066. https://doi.org/10.3390/foods11081066
Chicago/Turabian StyleMontoya, Leidy, Natalia Quintero, Stevens Ortiz, Juan Lopera, Patricia Millán, and Aída Rodríguez-Stouvenel. 2022. "Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions" Foods 11, no. 8: 1066. https://doi.org/10.3390/foods11081066