Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Chemical Exposure Assessment
2.2.1. Silicone-Wristband Preparation and Extraction
2.2.2. 1500 Screening Method
2.2.3. PAH Analysis Method
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. 1500 Screen Results
3.2.1. 1500 Screen Chemical Categories
3.2.2. Individual Chemical Analysis
3.3. 63 PAH Results
3.3.1. PAH Categories
3.3.2. Individual PAH Analysis
4. Discussion
4.1. Chemical Exposure Assessment during a Disaster
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAH | Polycyclic aromatic hydrocarbon |
VOC | Volatile organic compound |
SVOC | Semivolatile organic compound |
PCB | Polychlorinated biphenyl |
PCP | Personal care product |
LOD | Limit of detection |
LOQ | Limit of quantitation |
Houston-3H | Houston Hurricane Harvey Health |
References
- NOAA National Centers for Environmental Information (NCEI). U.S. Billion-Dollar Weather and Climate Disasters. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 24 June 2021).
- Banholzer, S.; Kossin, J.; Donner, S. The Impact of Climate Change on Natural Disasters. In Reducing Disaster: Early Warning Systems for Climate Change; Springer: Berlin/Heidelberg, Germany, 2014; pp. 21–49. [Google Scholar]
- Misuri, A.; Casson Moreno, V.; Quddus, N.; Cozzani, V. Lessons Learnt from The Impact of Hurricane Harvey On the Chemical and Process Industry. Reliab. Eng. Syst. Saf. 2019, 190, 106521. [Google Scholar] [CrossRef]
- Nascimento, K.R.D.S.; Alencar, M.H. Management of Risks in Natural Disasters: A Systematic Review of the Literature on NATECH Events. J. Loss Prev. Process Ind. 2016, 44, 347–359. [Google Scholar] [CrossRef]
- Showalter, P.S.; Myers, M.F. Natural disasters in the United States as Release Agents of Oil, Chemicals, Or Radiological Materials Between 1980-1989: Analysis and Recommendations. Risk Anal. 1994, 14, 169–182. [Google Scholar] [CrossRef]
- Steinberg, L.J.; Sengul, H.; Cruz, A.M. NATECH Risk and Management: An Assessment of The State of the Art. Nat. Hazards 2008, 46, 143–152. [Google Scholar] [CrossRef]
- Scheepers, P.T.; Bos, P.M.; Konings, J.; Janssen, N.A.; Grievink, L. Application of Biological Monitoring for Exposure Assessment Following Chemical Incidents: A Procedure for Decision Making. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Finucane, M.L.; Clark-Ginsberg, A.; Parker, A.M.; Becerra-Ornelas, A.U.; Clancy, N.; Ramchand, R.; Slack, T.; Parks, V.; Ayer, L.; Edelman, A.F.; et al. Building Community Resilience to Large Oil Spills: Findings and Recommendations from a Synthesis of Research on the Mental Health, Economic, and Community Distress Associated with the Deepwater Horizon Oil Spill; RAND Corporation: Santa Monica, CA, USA, 2020. [Google Scholar]
- Bongers, S.; Janssen, N.A.H.; Reiss, B.; Grievink, L.; Lebret, E.; Kromhout, H. Challenges of Exposure Assessment for Health Studies in the Aftermath of Chemical Incidents and Disasters. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 341–359. [Google Scholar] [CrossRef]
- Reams, M.A.; Harding, A.K.; Subra, W.; Lam, N.S.; O’Connell, S.G.; Tidwell, L.; Anderson, K.A. Response, Recovery, And Resilience to Oil Spills and Environmental Disasters: Exploration and Use of Novel Approaches to Enhance Community Resilience. J. Environ. Health 2017, 80, 8–15. [Google Scholar]
- Rohlman, D.; Samon, S.M.; Allan, S.E.; Barton, M.; Dixon, H.; Ghetu, C.C.; Tidwell, L.G.; Hoffman, P.D.; Oluyomi, A.; Symanski, E.; et al. Designing equitable, transparent community-engaged disaster research. Citiz. Sci. Theory Pract. 2022, 7, 22. [Google Scholar] [CrossRef]
- O’Connell, S.G.; Kincl, L.D.; Anderson, K.A. Silicone Wristbands as Personal Passive Samplers. Environ. Sci. Technol. 2014, 48, 3327–3335. [Google Scholar] [CrossRef]
- O’Connell, S.G.; Anderson, K.A.; Epstein, M.I. Determining chemical air equivalency using silicone personal monitors. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 268–279. [Google Scholar] [CrossRef]
- Dixon, H.M.; Scott, R.P.; Holmes, D.; Calero, L.; Kincl, L.D.; Waters, K.M.; Camann, D.E.; Calafat, A.M.; Herbstman, J.B.; Anderson, K.A. Silicone Wristbands Compared with Traditional Polycyclic Aromatic Hydrocarbon Exposure Assessment Methods. Anal. Bioanal. Chem. 2018, 410, 3059–3071. [Google Scholar] [CrossRef] [Green Version]
- Dixon, H.M.; Bramer, L.M.; Scott, R.P.; Calero, L.; Holmes, D.; Gibson, E.A.; Cavalier, H.M.; Rohlman, D.; Miller, R.L.; Calafat, A.M.; et al. Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure. Environ. Int. 2022, 163, 107226. [Google Scholar] [CrossRef]
- Wang, S.R.; Romanak, K.A.; Stubbings, W.A.; Arrandale, V.H.; Hendryx, M.; Diamond, M.L.; Salamova, A.; Venier, M. Silicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs). Environ. Int. 2019, 132, 105104. [Google Scholar] [CrossRef]
- Dixon, H.M.; Poutasse Carolyn, M.; Anderson Kim, A. Silicone Wristbands and Wearables to Assess Chemical Exposures. In Total Exposure Health, 1st ed.; Phillips, K.A., Yamamoto, D.P., Racz, L., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 139–160. [Google Scholar] [CrossRef]
- Hammel, S.C.; Phillips, A.L.; Hoffman, K.; Stapleton, H.M. Evaluating the Use of Silicone Wristbands To Measure Personal Exposure to Brominated Flame Retardants. Environ. Sci. Technol. 2018, 52, 11875–11885. [Google Scholar] [CrossRef]
- Hoffman, K.; Levasseur, J.L.; Zhang, S.; Hay, D.; Herkert, N.J.; Stapleton, H.M. Monitoring Human Exposure to Organophosphate Esters: Comparing Silicone Wristbands with Spot Urine Samples as Predictors of Internal Dose. Environ. Sci. Technol. Lett. 2021, 8, 805–810. [Google Scholar] [CrossRef]
- Hamzai, L.; Galvez, N.L.; Hoh, E.; Dodder, N.G.; Matt, G.E.; Quintana, P.J. A Systematic Review of the Use of Silicone Wristbands for Environmental Exposure Assessment, With A Focus on Polycyclic Aromatic Hydrocarbons (PAHs). J. Expo. Sci. Environ. Epidemiol. 2021, 32, 244–258. [Google Scholar] [CrossRef]
- Paulik, L.B.; Hobbie, K.A.; Rohlman, D.; Smith, B.W.; Scott, R.P.; Kincl, L.; Haynes, E.N.; Anderson, K.A. Environmental and Individual PAH Exposures Near Rural Natural Gas Extraction. Environ. Pollut. 2018, 241, 397–405. [Google Scholar] [CrossRef]
- Anderson, K.A.; Points, G.L.; Donald, C.E.; Dixon, H.M.; Scott, R.P.; Wilson, G.; Tidwell, L.G.; Hoffman, P.D.; Herbstman, J.B.; O’Connell, S.G. Preparation and Performance Features of Wristband Samplers and Considerations for Chemical Exposure Assessment. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 551–559. [Google Scholar] [CrossRef]
- Wacławik, M.; Rodzaj, W.; Wielgomas, B. Silicone Wristbands in Exposure Assessment: Analytical Considerations and Comparison with Other Approaches. Int. J. Environ. Res. Public Health 2022, 19, 1935. [Google Scholar] [CrossRef]
- Rohlman, D.; Dixon, H.M.; Kincl, L.; Larkin, A.; Evoy, R.; Barton, M.; Phillips, A.; Peterson, E.; Scaffidi, C.; Herbstman, J.B.; et al. Development of An Environmental Health Tool Linking Chemical Exposures, Physical Location and Lung Function. BMC Public Health 2019, 19, 854. [Google Scholar] [CrossRef]
- Qin, R.; Khakzad, N.; Zhu, J. An Overview of the Impact of Hurricane Harvey On Chemical and Process Facilities in Texas. Int. J. Disaster Risk Reduct. 2020, 45, 101453. [Google Scholar] [CrossRef]
- Phillips, A. Preparing for the Next Storm: Learning from the Man-Made Environmental Disasters That Followed Hurricane Harvey; Environmental Integrity Project: Washington, DC, USA, 2018; Available online: https://www.environmentalintegrity.org/wp-content/uploads/2018/08/Hurricane-Harvey-Report-Final.pdf (accessed on 18 March 2021).
- Meyler, D.; Stimpson, J.P.; Cutchin, M.P. Landscapes of Risk: Texas City and the Petrochemical Industry. Organ. Environ. 2007, 20, 204–212. [Google Scholar] [CrossRef]
- Ratnapradipa, D.P.; Cardinal, C.M.P.H.J.D.; Ratnapradipa, K.L.P.; Scarbrough, A.P.; Xie, Y.M.H.A.M.P. Implications of Hurricane Harvey on Environmental Public Health in Harris County, Texas. J. Environ. Health 2018, 81, 24–32. [Google Scholar]
- Phillips, A. Plastics Pollution on the Rise; E. I. Project: Bournemouth, UK, 2019. [Google Scholar]
- Fraase, B.C. The Un-Zoned City and Unplanned Disaster: A Case Study of Hurricane Harvey’s Impact on Houston, Texas. Va. Environ. Law J. 2020, 38, 232. [Google Scholar]
- Sebastian, A.; Gori, A.; Blessing, R.B.; van der Wiel, K.; Bass, B. Disentangling the Impacts of Human and Environmental Change on Catchment Response During Hurricane Harvey. Environ. Res. Lett. 2019, 14, 124023. [Google Scholar] [CrossRef]
- Slack, T.; Parks, V.; Ayer, L.; Parker, A.M.; Finucane, M.L.; Ramchand, R. NATECH Or Natural? An Analysis of Hazard Perceptions, Institutional Trust, and Future Storm Worry Following Hurricane Harvey. Nat. Hazards 2020, 102, 1207–1224. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization Exacerbated the Rainfall and Flooding Caused by Hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef]
- Horney, J.A.; Casillas, G.A.; Baker, E.; Stone, K.W.; Kirsch, K.R.; Camargo, K.; Wade, T.L.; McDonald, T.J. Comparing Residential Contamination in A Houston Environmental Justice Neighborhood Before and After Hurricane Harvey. PLoS ONE 2018, 13, e0192660. [Google Scholar] [CrossRef] [Green Version]
- Karaye, I.; Stone, K.W.; Casillas, G.A.; Newman, G.; Horney, J.A. A Spatial Analysis of Possible Environmental Exposures in Recreational Areas Impacted by Hurricane Harvey Flooding, Harris County, Texas. Environ. Manag. 2019, 64, 381–390. [Google Scholar] [CrossRef]
- Stone, K.W.; Casillas, G.A.; Karaye, I.; Camargo, K.; McDonald, T.J.; Horney, J.A. Using Spatial Analysis to Examine Potential Sources of Polycyclic Aromatic Hydrocarbons in An Environmental Justice Community after Hurricane Harvey. Environ. Justice 2019, 12, 194–203. [Google Scholar] [CrossRef]
- Nicole, W. Wristbands for Research: Using Wearable Sensors to Collect Exposure Data after Hurricane Harvey. Environ. Health Perspect. 2018, 126, 042001. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Nisbet, I.C.; Lagoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Oluyomi, A.O.; Panthagani, K.; Sotelo, J.; Gu, X.; Armstrong, G.; Luo, D.N.; Hoffman, K.L.; Rohlman, D.; Tidwell, L.; Hamilton, W.J.; et al. Houston Hurricane Harvey Health (Houston-3H) Study: Assessment of Allergic Symptoms and Stress After Hurricane Harvey Flooding. Environ. Health 2021, 20, 9. [Google Scholar] [CrossRef]
- Dixon, H.M.; Armstrong, G.; Barton, M.; Bergmann, A.J.; Bondy, M.; Halbleib, M.L.; Hamilton, W.; Haynes, E.; Herbstman, J.; Hoffman, P.; et al. Discovery of Common Chemical Exposures Across Three Continents Using Silicone Wristbands. R. Soc. Open Sci. 2019, 6, 181836. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, A.J.; Points, G.L.; Scott, R.P.; Wilson, G.; Anderson, K.A. Development of Quantitative Screen for 1550 chemicals with GC-MS. Anal. Bioanal. Chem. 2018, 410, 3101–3110. [Google Scholar] [CrossRef] [Green Version]
- Poutasse, C.M.; Poston, W.S.C.; Jahnke, S.A.; Haddock, C.K.; Tidwell, L.G.; Hoffman, P.D.; Anderson, K.A. Discovery of firefighter chemical exposures using military-style silicone dog tags. Environ. Int. 2020, 142, 105818. [Google Scholar] [CrossRef]
- Bayard, K.; Decker, R.; Gilbert, C. Natural Disasters and the Measurement of Industrial Production: Hurricane Harvey, a Case Study. FEDS Notes; 2017. Available online: https://www.federalreserve.gov/econres/notes/feds-notes/natural-disasters-and-the-measurement-of-industrial-production-hurricane-harvey-a-case-study-20171011.htm (accessed on 24 June 2021).
- Carls, M.G.; Meador, J.P. A Perspective on The Toxicity of Petrogenic PAHs to Developing Fish Embryos Related to Environmental Chemistry. Hum. Ecol. Risk Assess. 2009, 15, 1084–1098. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Unwin, J.; Cocker, J.; Scobbie, E.; Chambers, H. An Assessment of Occupational Exposure to Polycyclic Aromatic Hydrocarbons in the UK. Ann. Occup. Hyg. 2006, 50, 395–403. [Google Scholar] [CrossRef] [Green Version]
- NTP (National Toxicology Program). Report on Carcinogens, 15th ed.; National Toxicology Program: Research Triangle Park, NC, USA, 2021. Available online: https://ntp.niehs.nih.gov/go/roc15 (accessed on 24 June 2021).
- Bera, G.; Camargo, K.; Sericano, J.L.; Liu, Y.; Sweet, S.T.; Horney, J.; Jun, M.; Chiu, W.; Rusyn, I.; Wade, T.L.; et al. Baseline data for distribution of contaminants by natural disasters: Results from a residential Houston neighborhood during Hurricane Harvey flooding. Heliyon 2019, 5, e02860. [Google Scholar] [CrossRef]
- Du, J.; Park, K.; Yu, X.; Zhang, Y.J.; Ye, F. Massive Pollutants Released to Galveston Bay During Hurricane Harvey: Understanding Their Retention and Pathway Using Lagrangian Numerical Simulations. Sci. Total Environ. 2020, 704, 135364. [Google Scholar] [CrossRef]
- Flores, A.B.; Castor, A.; Grineski, S.E.; Collins, T.W.; Mullen, C. Petrochemical Releases Disproportionately Affected Socially Vulnerable Populations Along the Texas Gulf Coast After Hurricane Harvey. Popul. Environ. 2021, 42, 279–301. [Google Scholar] [CrossRef]
- Kiaghadi, A.; Rifai, H.S. Physical, Chemical, and Microbial Quality of Floodwaters in Houston Following Hurricane Harvey. Environ. Sci. Technol. 2019, 53, 4832–4840. [Google Scholar] [CrossRef]
Detection Frequency (%) | Mean (nmol/WB) | |||||||
---|---|---|---|---|---|---|---|---|
Target Analyte | Post- Hurricane | Estimated Baseline | Post- Hurricane | Estimated Baseline | Average Difference | SE of Difference | Sum of Signed Rank (W) | p Value |
Di-n-butyl phthalate | 94 | 100 | 150 | 80 | 67 | 12 | 2900 | <0.0001 **** |
Galaxolide | 95 | 97 | 150 | 130 | 21 | 24 | 1400 | 0.016 * |
Butyl benzyl phthalate | 97 | 98 | 120 | 30 | 86 | 11 | 4200 | <0.0001 **** |
Diisobutyl phthalate | 80 | 99 | 130 | 67 | 61 | 12 | 2700 | <0.0001 **** |
N,N-Diethyl-m-toluamide | 84 | 90 | 120 | 130 | −11 | 43 | 1800 | 0.0013 ** |
Tonalide | 85 | 94 | 37 | 6.7 | 31 | 5.1 | 3800 | <0.0001 **** |
Lilial | 83 | 87 | 140 | 52 | 83 | 19 | 3100 | <0.0001 **** |
Benzophenone | 86 | 81 | 31 | 8.4 | 23 | 3.2 | 4200 | <0.0001 **** |
Diethyl phthalate | 90 | 81 | 150 | 50 | 96 | 18 | 3800 | <0.0001 **** |
Butylated hydroxytoluene | 78 | 86 | 19 | 8.1 | 11 | 3.0 | 2700 | <0.0001 **** |
Tri-phenyl phosphate | 86 | 75 | 36 | 5.4 | 30 | 6.3 | 4100 | <0.0001 **** |
Ethylene brassylate | 62 | 86 | 230 | 170 | 53 | 44 | 770 | 0.12 |
Benzyl salicylate | 52 | 93 | 90 | 190 | −97 | 26 | −1800 | 0.00078 *** |
Di-n-nonyl phthalate | 51 | 84 | 22 | 20 | 1.4 | 5.7 | 240 | 0.64 |
Amyl cinnamal | 67 | 62 | 39 | 7.9 | 31 | 5.4 | 2500 | <0.0001 **** |
Butylated hydroxyanisole | 51 | 67 | 8.6 | 2.2 | 6.5 | 1.0 | 2300 | <0.0001 **** |
Bis(2-ethylhexyl) phthalate | 22 | 93 | 22 | 440 | −420 | 85 | −2900 | <0.0001 **** |
Benzyl benzoate | 44 | 61 | 110 | 69 | 36 | 21 | 890 | 0.014 * |
Tris(2-chloro-2-propyl) phosphate | 41 | 72 | 22 | 9.0 | 13 | 8.1 | 590 | 0.15 |
b-Ionone | 49 | 60 | 25 | 6.3 | 18 | 6.7 | 1600 | <0.0001 **** |
Permethrin | 47 | 54 | 8.2 | 5.2 | 3.1 | 2.8 | 900 | 0.0034 ** |
Benzothioazole | 51 | 39 | 7.9 | 1.3 | 6.7 | 1.2 | 2000 | <0.0001 **** |
Caffeine | 39 | 51 | 58 | 15 | 43 | 11 | 1100 | <0.0001 **** |
Coumarin | 14 | 57 | 7.1 | 4.5 | 2.6 | 2.1 | −580 | 0.038 * |
2,4-di-tert-butylphenol | 71 | 12 | 13 | 0.56 | 12 | 1.1 | 2800 | <0.0001 **** |
Linalool | 29 | 32 | 7.0 | 2.4 | 4.6 | 1.6 | 450 | 0.0058 ** |
Bifenthrin | 35 | 18 | 3.9 | 0.85 | 3.1 | 1.1 | 630 | <0.0001 **** |
d-Limonene | 35 | 18 | 1.9 | 0.36 | 1.5 | 0.61 | 610 | <0.0001 **** |
Tris(2-ethylhexyl) phosphate | 42 | 4.0 | 9.7 | 0.41 | 9.3 | 3.1 | 980 | <0.0001 **** |
Detection Frequency (%) | Mean (nmol/WB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ring Size | Target Analyte | Post- Hurricane | Estimated Baseline | Post- Hurricane | Estimated Baseline | Average Difference | SE of Difference | Sum of Signed Rank (W) | p Value |
2-ring | 2-Methylnaphthalene | 99 | 100 | 1.17 | 0.693 | 0.476 | 0.621 | −175 | 0.0021 ** |
1-Methylnaphthalene | 98 | 100 | 2.11 | 3.85 | −1.74 | 2.25 | −642 | 0.265 | |
Naphthalene | 99 | 100 | 0.594 | 0.345 | 0.249 | 0.307 | −1410 | 0.0132 * | |
1,6 and 1,3-Dimethylnaphthalene | 90 | 81 | 0.573 | 0.479 | 0.0937 | 0.149 | −1040 | 0.0574 | |
2-Ethylnaphthalene | 85 | 70 | 0.126 | 0.106 | 0.0202 | 0.0200 | 731 | 0.163 | |
1,2-Dimethylnaphthalene | 70 | 53 | 0.0491 | 0.0509 | −0.00184 | 0.00847 | −148 | 0.744 | |
1,4-Dimethylnaphthalene | 65 | 47 | 0.0448 | 0.0493 | −0.00456 | 0.00971 | −311 | 0.468 | |
1,5-Dimethylnaphthalene | 56 | 43 | 0.0848 | 0.115 | −0.0304 | 0.0210 | −634 | 0.0948 | |
3-ring | Retene | 99 | 100 | 0.341 | 0.410 | −0.0688 | 0.117 | −120 | 0.836 |
Phenanthrene | 96 | 100 | 1.90 | 1.36 | 0.546 | 0.288 | 1399 | 0.0142 * | |
1-Methylphenanthrene | 93 | 100 | 0.692 | 0.463 | 0.229 | 0.127 | 882 | 0.125 | |
Dibenzothiophene | 92 | 99 | 0.150 | 0.134 | 0.0161 | 0.0214 | 318 | 0.582 | |
2-Methylphenanthrene | 89 | 100 | 0.645 | 0.556 | 0.0896 | 0.0698 | 388 | 0.501 | |
Fluorene | 82 | 93 | 0.306 | 0.260 | 0.0456 | 0.0451 | 134 | 0.809 | |
3,6-Dimethylphenanthrene | 79 | 76 | 0.0970 | 0.115 | −0.0185 | 0.0137 | −1140 | 0.0370 * | |
Acenaphthene | 65 | 9 | 0.240 | 0.0885 | 0.1517 | 0.0290 | 1700 | <0.0001 **** | |
Acenaphthylene | 35 | 22 | 0.0288 | 0.0458 | −0.0169 | 0.00936 | −170 | 0.311 | |
Anthracene | 30 | 19 | 0.401 | 0.0558 | 0.345 | 0.293 | 227 | 0.159 | |
2,3-Dimethylanthracene | 39 | 0 | 0.0415 | 0.00117 | 0.0403 | 0.016 | 780 | <0.0001 **** | |
4-ring | Pyrene | 99 | 100 | 0.464 | 0.236 | 0.228 | 0.0449 | 4060 | <0.0001 **** |
Fluoranthene | 99 | 97 | 0.486 | 0.298 | 0.188 | 0.104 | 2590 | <0.0001 **** | |
1-Methylpyrene | 100 | 93 | 0.0627 | 0.0655 | −0.00288 | 0.00603 | −644 | 0.263 | |
Triphenylene | 58 | 31 | 0.0331 | 0.0297 | 0.00333 | 0.00540 | 579 | 0.0644 | |
Chrysene | 57 | 29 | 0.0296 | 0.0286 | 0.000980 | 0.00825 | 671 | 0.0279 * | |
Benz[a]anthracene | 34 | 18 | 0.0200 | 0.0212 | −0.00127 | 0.00615 | 124 | 0.413 | |
5-ring | Benzo[b]fluoranthene | 65 | 43 | 0.0227 | 0.0214 | 0.00136 | 0.00682 | 938 | 0.008 ** |
Benzo[e]pyrene | 61 | 24 | 0.0224 | 0.0159 | 0.006440 | 0.00560 | 1290 | <0.0001 **** | |
Benzo[k]fluoranthene | 37 | 9 | 0.00880 | 0.00819 | 0.000619 | 0.00357 | 498 | 0.0003 *** | |
Benzo[j]fluoranthene | 30 | 8 | 0.00750 | 0.00767 | −0.000172 | 0.00422 | 350 | 0.0007 *** | |
6-ring | Benzo[ghi]perylene | 94 | 43 | 0.0218 | 0.00646 | 0.0153 | 0.00211 | 4180 | <0.0001 **** |
7-ring | Coronene | 82 | 2 | 0.0105 | 0.00184 | 0.008690 | 0.000593 | 3320 | <0.0001**** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samon, S.M.; Rohlman, D.; Tidwell, L.G.; Hoffman, P.D.; Oluyomi, A.O.; Anderson, K.A. Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands. Int. J. Environ. Res. Public Health 2022, 19, 6670. https://doi.org/10.3390/ijerph19116670
Samon SM, Rohlman D, Tidwell LG, Hoffman PD, Oluyomi AO, Anderson KA. Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands. International Journal of Environmental Research and Public Health. 2022; 19(11):6670. https://doi.org/10.3390/ijerph19116670
Chicago/Turabian StyleSamon, Samantha M., Diana Rohlman, Lane G. Tidwell, Peter D. Hoffman, Abiodun O. Oluyomi, and Kim A. Anderson. 2022. "Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands" International Journal of Environmental Research and Public Health 19, no. 11: 6670. https://doi.org/10.3390/ijerph19116670
APA StyleSamon, S. M., Rohlman, D., Tidwell, L. G., Hoffman, P. D., Oluyomi, A. O., & Anderson, K. A. (2022). Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands. International Journal of Environmental Research and Public Health, 19(11), 6670. https://doi.org/10.3390/ijerph19116670