Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of the Composition of Lavender Essential Oil
2.2. Analysis of the Physicochemical Properties of the Obtained Transdermal Patches
2.3. Antioxidant Activity
2.4. Release and Permeation Study
3. Materials and Methods
3.1. Materials
3.2. Analysis of the Composition of Lavender Essential Oil
3.3. Preparation of Adhesive Films
3.4. Coat Weight of Cross-Linked Adhesive Films
3.5. Self-Adhesive Properties of Cross-Linked Adhesive Films
3.6. Thermal Stability and Phase Transition Temperatures of Adhesives and Cross-Linked Adhesive Films
3.7. Antioxidant Activity of Patches and L. angustifolia Essential Oil
- —absorbance of the tested sample;
- —absorbance of the control sample.
3.8. In Vitro Skin Permeation, Release, and Accumulation Studies
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agboola, A.A.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Story, A.; Story, G.; Struk, Ł.; Antosik, A.K.; Ossowicz-Rupniewska, P. Emulsion-Based Gel Loaded with Ibuprofen and Its Derivatives. Gels 2023, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Bednarczyk, P.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Ossowicz-Rupniewska, P. Enhancing Transdermal Delivery: Investigating the Impact of Permeation Promoters on Ibuprofen Release and Penetration from Medical Patches—In Vitro Research. Int. J. Mol. Sci. 2023, 24, 15632. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.; Das, A.; Ahmed, A.B. Formulation and Evaluation of Transdermal Topical Gel of Ibuprofen. J. Drug Deliv. Ther. 2020, 10, 20–25. [Google Scholar] [CrossRef]
- Myburgh, J.; Liebenberg, W.; Willers, C.; Dube, A.; Gerber, M. Investigation and Evaluation of the Transdermal Delivery of Ibuprofen in Various Characterized Nano-Drug Delivery Systems. Pharmaceutics 2023, 15, 2413. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Tian, C.; Liu, L.; Hu, R.; Gui, S.; Chu, X. Transdermal Administration of Ibuprofen-Loaded Gel: Preparation, Pharmacokinetic Profile, and Tissue Distribution. AAPS PharmSciTech 2020, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Ossowicz-Rupniewska, P.; Rakoczy, R.; Nowak, A.; Konopacki, M.; Klebeko, J.; Świątek, E.; Janus, E.; Duchnik, W.; Wenelska, K.; Kucharski, Ł.; et al. Transdermal Delivery Systems for Ibuprofen and Ibuprofen Modified with Amino Acids Alkyl Esters Based on Bacterial Cellulose. Int. J. Mol. Sci. 2021, 22, 6252. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K.D. Ibuprofen: Pharmacology, Efficacy and Safety. Inflammopharmacology 2009, 17, 275–342. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, S.; Kwak, S.S.; Kim, J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv. Healthc. Mater. 2024, 13, 2302375. [Google Scholar] [CrossRef]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming Skin Barriers through Advanced Transdermal Drug Delivery Approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Wong, W.F.; Ang, K.P.; Sethi, G.; Looi, C.Y. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina 2023, 59, 778. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, R.; Wang, Y.; Zhang, Y.; Yu, J.; Gu, Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew. Chem. 2023, 135, e202214795. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.-D.; Wu, Y.-M.; Liu, P.; Yao, J.-H.; Lu, Q.; Zhang, H.; Duan, J.-A. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea. Molecules 2015, 20, 18219–18236. [Google Scholar] [CrossRef] [PubMed]
- Kawana, M.; Miyamoto, M.; Ohno, Y.; Kihara, A. Comparative Profiling and Comprehensive Quantification of Stratum Corneum Ceramides in Humans and Mice by LC/MS/MS. J. Lipid Res. 2020, 61, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Aqil, M.; Ali, A. The Application of Anethole, Menthone, and Eugenol in Transdermal Penetration of Valsartan: Enhancement and Mechanistic Investigation. Pharm. Biol. 2016, 54, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zagórska-Dziok, M.; Ossowicz-Rupniewska, P.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Prowans, P.; Czapla, N.; Bargiel, P.; et al. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021, 26, 3456. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of Essential Oils as Skin Permeation Enhancers: Penetration Enhancement Effect and Mechanism of Action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Essential Oils and Their Constituents as Skin Penetration Enhancer for Transdermal Drug Delivery: A Review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-Inflammatory and Analgesic Properties of the Leaf Extracts and Essential Oil of Lavandula angustifolia Mill. J. Ethnopharmacol. 2003, 89, 67–71. [Google Scholar] [CrossRef]
- Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evid.-Based Complement. Altern. Med. 2018, 2018, 1413940. [Google Scholar] [CrossRef]
- López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Front. Pharmacol. 2017, 8, 280. [Google Scholar] [CrossRef]
- De Melo Alves Silva, L.C.; De Oliveira Mendes, F.D.C.; De Castro Teixeira, F.; De Lima Fernandes, T.E.; Barros Ribeiro, K.R.; Da Silva Leal, K.C.; Dantas, D.V.; Neves Dantas, R.A. Use of Lavandula angustifolia Essential Oil as a Complementary Therapy in Adult Health Care: A Scoping Review. Heliyon 2023, 9, e15446. [Google Scholar] [CrossRef]
- Hugar, S.M.; Gokhale, N.; Uppin, C.; Kajjari, S.; Meharwade, P.; Joshi, R.S. The Effects of Lavender Essential Oil and Its Clinical Implications in Dentistry: A Review. Int. J. Clin. Pediatr. Dent. 2022, 15, 385–388. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.I.; Taktak, N.E.M. Characterization, Antimicrobial Activity, and Antioxidant Activity of the Nanoemulsions of Lavandula Spica Essential Oil and Its Main Monoterpenes. J. Drug Deliv. Sci. Technol. 2021, 65, 102732. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.; Qian, C.; Du, Z.; Xu, P.; Xiang, Z. Chemical Compositions of Essential Oil Extracted from Lavandula angustifolia and Its Prevention of TPA-Induced Inflammation. Microchem. J. 2020, 153, 104458. [Google Scholar] [CrossRef]
- Alqahtani, A.; Abdelhameed, M.F.; Abdou, R.; Ibrahim, A.M.; Dawoud, M.; Alasmari, S.M.; El Raey, M.A.; Attia, H.G. Mechanistic Action of Linalyl Acetate: Acyclic Monoterpene Isolated from Bitter Orange Leaf as Anti-Inflammatory, Analgesic, Antipyretic Agent: Role of TNF-α, IL1β, PGE2, and COX-2. Ind. Crops Prod. 2023, 203, 117131. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-Inflammatory Activity of Linalool and Linalyl Acetate Constituents of Essential Oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Peana, A.T.; Moretti, M.D.L. Linalool in Essential Plant Oils: Pharmacological Effects. In Botanical Medicine in Clinical Practice; Watson, R.R., Preedy, V.R., Eds.; CAB International: Wallingford, UK, 2008; pp. 716–724. ISBN 978-1-84593-413-2. [Google Scholar]
- El-Tokhy, F.S.; Abdel-Mottaleb, M.M.A.; Abdel Mageed, S.S.; Mahmoud, A.M.A.; El-Ghany, E.A.; Geneidi, A.S. Boosting the In Vivo Transdermal Bioavailability of Asenapine Maleate Using Novel Lavender Oil-Based Lipid Nanocapsules for Management of Schizophrenia. Pharmaceutics 2023, 15, 490. [Google Scholar] [CrossRef]
- Hosny, K.M.; Sindi, A.M.; Alkhalidi, H.M.; Kurakula, M.; Alruwaili, N.K.; Alhakamy, N.A.; Abualsunun, W.A.; Bakhaidar, R.B.; Bahmdan, R.H.; Rizg, W.Y.; et al. Oral Gel Loaded with Penciclovir–Lavender Oil Nanoemulsion to Enhance Bioavailability and Alleviate Pain Associated with Herpes Labialis. Drug Deliv. 2021, 28, 1043–1054. [Google Scholar] [CrossRef]
- Schafer, N.; Balwierz, R.; Biernat, P.; Ochędzan-Siodłak, W.; Lipok, J. Natural Ingredients of Transdermal Drug Delivery Systems as Permeation Enhancers of Active Substances through the Stratum Corneum. Mol. Pharm. 2023, 20, 3278–3297. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.-H.; Shu, Y.-T.; Dong, J.; Gu, W.; Xu, F.; Chen, J. Comparative study of penetration-enhancing effect in vitro of cinnamon oil and cinnamaldehyde on ibuprofen. Zhongguo Zhong Yao Za Zhi 2018, 43, 3493–3497. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, S.; Emad, S.; Perveen, T.; Yousuf, S.; Sheikh, S.; Sarfaraz, Y.; Sadaf, S.; Haider, S. Role of Ibuprofen and Lavender Oil to Alter the Stress Induced Psychological Disorders: A Comparative Study. Pak. J. Pharm. Sci. 2018, 31, 1603–1608. [Google Scholar] [PubMed]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Erratum for: Lavandula angustifolia and Lavandula Latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Medica 2015, 82, E4. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Rahman, L.; Chanotiya, C.; Verma, R.; Chauhan, A.; Yadav, A.; Singh, A.; Yadav, A. Essential Oil Composition of Lavandula angustifolia Mill. Cultivated in the Mid Hills of Uttarakhand, India. J. Serbian Chem. Soc. 2010, 75, 343–348. [Google Scholar] [CrossRef]
- Andrei, F.; Ersilia, A.; Tulcan, C.; Dragomirescu, A. Chemical Composition and the Potential of Lavandula angustifolia L. Oil as a Skin Depigmentant. Rec. Nat. Prod. 2018, 12, 340–349. [Google Scholar] [CrossRef]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef] [PubMed]
- Lakušic, B.; Lakušic, D.; Ristic, M.; Marčetic, M.; Slavkovska, V. Seasonal Variations in the Composition of the Essential Oils of Lavandula angustifolia (Lamiacae). Nat. Prod. Commun. 2014, 9, 1934578X1400900. [Google Scholar] [CrossRef]
- Kim, M.-G.; Kim, S.-M.; Min, J.-H.; Kwon, O.-K.; Park, M.-H.; Park, J.-W.; Ahn, H.I.; Hwang, J.-Y.; Oh, S.-R.; Lee, J.-W.; et al. Anti-Inflammatory Effects of Linalool on Ovalbumin-Induced Pulmonary Inflammation. Int. Immunopharmacol. 2019, 74, 105706. [Google Scholar] [CrossRef]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Prasad Nagarajan, R.; Ponniresan, V.K.; et al. Linalool Prevents Oxidative Stress Activated Protein Kinases in Single UVB-Exposed Human Skin Cells. PLoS ONE 2017, 12, e0176699. [Google Scholar] [CrossRef]
- Kıvrak, Ş. Essential Oil Composition and Antioxidant Activities of Eight Cultivars of Lavender and Lavandin from Western Anatolia. Ind. Crops Prod. 2018, 117, 88–96. [Google Scholar] [CrossRef]
- Malika, B. Antioxidant Activity of the Essential Oil from the Flowers of Lavandula Stoechas. J. Pharmacogn. Phytother. 2012, 4, 96–101. [Google Scholar] [CrossRef]
- Messaoud, C.; Chograni, H.; Boussaid, M. Chemical Composition and Antioxidant Activities of Essential Oils and Methanol Extracts of Three Wild Lavandula L. Species. Nat. Prod. Res. 2012, 26, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- El Abdali, Y.; Agour, A.; Allali, A.; Bourhia, M.; El Moussaoui, A.; Eloutassi, N.; Salamatullah, A.M.; Alzahrani, A.; Ouahmane, L.; Aboul-Soud, M.A.M.; et al. Lavandula dentata L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. Plants 2022, 11, 311. [Google Scholar] [CrossRef]
- Esposito, S.; De Simone, G.; Pan, A.; Brambilla, P.; Gattuso, G.; Mastroianni, C.; Kertusha, B.; Contini, C.; Massoli, L.; Francisci, D.; et al. Epidemiology and Microbiology of Skin and Soft Tissue Infections: Preliminary Results of a National Registry. J. Chemother. 2019, 31, 9–14. [Google Scholar] [CrossRef]
- Chakraborty, S.P.; Roy, S. In Vitro Staphylococcus aureus–Induced Oxidative Stress in Mice Murine Peritoneal Macrophages: A Duration–Dependent Approach. Asian Pac. J. Trop. Biomed. 2014, 4, S298–S304. [Google Scholar] [CrossRef]
- Chakraborty, S.P.; Pramanik, P.; Roy, S. Staphylococcus aureus Infection Induced Oxidative Imbalance in Neutrophils: Possible Protective Role of Nanoconjugated Vancomycin. ISRN Pharmacol. 2012, 2012, 435214. [Google Scholar] [CrossRef]
- Pitz, H.d.S.; Pereira, A.; Blasius, M.B.; Voytena, A.P.L.; Affonso, R.C.L.; Fanan, S.; Trevisan, A.C.D.; Ribeiro-do-Valle, R.M.; Maraschin, M. In Vitro Evaluation of the Antioxidant Activity and Wound Healing Properties of Jaboticaba (Plinia peruviana) Fruit Peel Hydroalcoholic Extract. Oxidative Med. Cell. Longev. 2016, 2016, 3403586. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, W.; Li, W. The Effect of Clove Oil on the Transdermal Delivery of Ibuprofen in the Rabbit by In Vitro and In Vivo Methods. Drug Dev. Ind. Pharm. 2007, 33, 1369–1374. [Google Scholar] [CrossRef]
- Valgimigli, L.; Gabbanini, S.; Berlini, E.; Lucchi, E.; Beltramini, C.; Bertarelli, Y.L. Lemon (Citrus limon, Burm.f.) Essential Oil Enhances the Trans-epidermal Release of Lipid-(A, E) and Water-(B6, C) Soluble Vitamins from Topical Emulsions in Reconstructed Human Epidermis. Int. J. Cosmet. Sci. 2012, 34, 347–356. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, Q.; Mao, Y.; Wang, Q.; An, J.; Chen, Y.; Wang, W.; Zhao, B.; Liu, N.; Zhang, Y. Cytotoxicity and Enhancement Activity of Essential Oil from Zanthoxylum Bungeanum Maxim. as a Natural Transdermal Penetration Enhancer. J. Zhejiang Univ. Sci. B 2014, 15, 153–164. [Google Scholar] [CrossRef]
- Karpanen, T.J.; Conway, B.R.; Worthington, T.; Hilton, A.C.; Elliott, T.S.; Lambert, P.A. Enhanced Chlorhexidine Skin Penetration with Eucalyptus Oil. BMC Infect. Dis. 2010, 10, 278. [Google Scholar] [CrossRef]
- Charoo, N.A.; Shamsher, A.A.A.; Kohli, K.; Pillai, K.; Rahman, Z. Improvement in Bioavailability of Transdermally Applied Flurbiprofen Using Tulsi (Ocimum sanctum) and Turpentine Oil. Colloids Surf. B Biointerfaces 2008, 65, 300–307. [Google Scholar] [CrossRef]
- Pandit, J.; Aqil, M.; Sultana, Y. Terpenes and Essential Oils as Skin Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 173–193. ISBN 978-3-662-47038-1. [Google Scholar]
- Vaddi, H.K.; Ho, P.C.; Chan, Y.W.; Chan, S.Y. Terpenes in Ethanol: Haloperidol Permeation and Partition through Human Skin and Stratum Corneum Changes. J. Control. Release 2002, 81, 121–133. [Google Scholar] [CrossRef]
- Sapra, B.; Jain, S.; Tiwary, A.K. Percutaneous Permeation Enhancement by Terpenes: Mechanistic View. AAPS J. 2008, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Cal, K.; Janicki, S.; Sznitowska, M. In Vitro Studies on Penetration of Terpenes from Matrix-Type Transdermal Systems through Human Skin. Int. J. Pharm. 2001, 224, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Bednarczyk, P.; Mozelewska, K.; Czech, Z. Influence of the UV Crosslinking Method on the Properties of Acrylic Adhesive. Int. J. Adhes. Adhes. 2020, 102, 102652. [Google Scholar] [CrossRef]
- Nowak, A. Ocena Właściwości Antyoksydacyjnych Liści Ginkgo biloba L. Po Zakończeniu Wegetacji. Pomeranian J. Life Sci. 2017, 63, 24–30. [Google Scholar] [CrossRef]
No. | Compound | Rt [min] | RIexp. | RILit. | Relative Content [%] | SD |
---|---|---|---|---|---|---|
1. | (E)-Hex-2-en-1-ol | 4.72 | 852 | 853 | 0.03 | 0.01 |
2. | (Z)-Hex-2-en-1-ol | 4.96 | 865 | 866 | 0.08 | 0.01 |
3. | 2-Heptanone | 5.44 | 889 | 889 | 0.05 | 0.00 |
4. | Tricyclene | 6.20 | 922 | 921 | 0.09 | 0.01 |
5. | α-Thujen | 6.31 | 926 | 927 | 0.09 | 0.01 |
6. | α-Pinene | 6.48 | 933 | 934 | 0.33 | 0.01 |
7. | Camphene | 6.85 | 947 | 949 | 1.06 | 0.02 |
8. | β-Thujene | 7.49 | 973 | 973 | 0.08 | 0.01 |
9. | β-Pinene | 7.57 | 976 | 977 | 0.31 | 0.01 |
10. | 1-Octen-3-ol | 7.81 | 985 | 986 | 0.40 | 0.00 |
11. | 3-Octanone | 7.93 | 990 | 991 | 0.39 | 0.03 |
12. | 3-Octanol | 8.05 | 995 | 994 | 0.14 | 0.00 |
13. | α-Phelandrene | 8.29 | 1004 | 1003 | 0.02 | 0.03 |
14. | 3-Carene | 8.46 | 1010 | 1009 | 0.14 | 0.01 |
15. | Hexyl acetate | 8.53 | 1013 | 1014 | 0.27 | 0.00 |
16. | α-Terpinene | 8.63 | 1016 | 1016 | 0.03 | 0.06 |
17. | m-Cymen | 8.78 | 1022 | 1023 | 0.05 | 0.00 |
18. | p-Cymen | 8.85 | 1024 | 1025 | 0.55 | 0.07 |
19. | D-Limonene | 8.97 | 1028 | 1029 | 2.62 | 0.03 |
20. | Eucalyptol | 9.04 | 1031 | 1031 | 2.41 | 0.04 |
21. | (Z)-β-Ocymene | 9.21 | 1037 | 1038 | 1.25 | 0.34 |
22. | (E)-β-Ocimene | 9.49 | 1047 | 1049 | 0.60 | 0.22 |
23. | γ-Terpinene | 9.80 | 1058 | 1059 | 0.08 | 0.06 |
24. | cis-Sabinene hydrate | 10.03 | 1066 | 1066 | 0.10 | 0.01 |
25. | Cis-linalool oxide | 10.19 | 1072 | 1073 | 0.19 | 0.01 |
26. | Trans-linalool oxide | 10.64 | 1088 | 1088 | 0.31 | 0.03 |
27. | Linalool | 11.11 | 1105 | 1105 | 28.19 | 0.09 |
28. | Nonanal | 11.16 | 1107 | 1107 | 0.08 | 0.10 |
29. | 1-Octen-3-yl acetate | 11.31 | 1112 | 1111 | 0.45 | 0.01 |
30. | Fenchol | 11.41 | 1116 | 1117 | 0.02 | 0.02 |
31. | (Z)-p-Menth-2-en-1-ol | 11.59 | 1122 | 1122 | 0.02 | 0.03 |
32. | β-Thujone | 11.63 | 1123 | 1124 | 0.12 | 0.02 |
33. | α-Campholenal | 11.78 | 1129 | 1130 | 0.02 | 0.02 |
34. | allo-Ocimene | 11.90 | 1133 | 1131 | 0.22 | 0.01 |
35. | (E)-Pinocarveol | 12.06 | 1139 | 1140 | 0.05 | 0.02 |
36. | cis-Sabinol | 12.14 | 1142 | 1143 | 0.03 | 0.01 |
37. | Camphor | 12.25 | 1146 | 1145 | 3.55 | 0.04 |
38. | (Z)-2-Nonenal | 12.31 | 1148 | 1148 | 0.02 | 0.05 |
39. | Nerol oxide | 12.58 | 1157 | 1155 | 0.20 | 0.01 |
40. | Borneol | 12.84 | 1167 | 1168 | 2.44 | 0.02 |
41. | 1-Nonanol | 13.04 | 1174 | 1175 | 0.44 | 0.01 |
42. | Terpinen-4-ol | 13.17 | 1178 | 1178 | 2.32 | 0.01 |
43. | p-Cymen-8-ol | 13.28 | 1182 | 1183 | 0.06 | 0.01 |
44. | Cryptone | 13.41 | 1187 | 1187 | 0.22 | 0.02 |
45. | α-Terpineol | 13.53 | 1191 | 1192 | 1.73 | 0.04 |
46. | Myrtenal | 13.71 | 1198 | 1197 | 0.17 | 0.03 |
47. | Dodecan | 13.81 | 1201 | 1200 | 0.04 | 0.04 |
48. | Verbenone | 14.06 | 1210 | 1211 | 0.05 | 0.03 |
49. | (Z)-Carveol | 14.57 | 1229 | 1229 | 0.28 | 0.02 |
50. | Pulegone | 14.77 | 1236 | 1237 | 0.16 | 0.01 |
51. | Cuminal | 14.91 | 1241 | 1240 | 0.19 | 0.01 |
52. | D-Carvone | 15.00 | 1245 | 1246 | 0.04 | 0.01 |
53. | Linalyl acetate | 15.45 | 1261 | 1259 | 34.90 | 0.36 |
54. | trans-Geraniol | 15.58 | 1266 | 1269 | 0.07 | 0.01 |
55. | α-Citral | 15.73 | 1271 | 1271 | 0.04 | 0.04 |
56. | Phellandral | 15.77 | 1273 | 1274 | 0.13 | 0.02 |
57. | Citronellol formate | 15.93 | 1279 | 1278 | 0.02 | 0.02 |
58. | Neryl formate | 15.98 | 1281 | 1284 | 0.20 | 0.02 |
59. | Borneol acetate | 16.16 | 1287 | 1288 | 0.18 | 0.02 |
60. | Lavandulyl acetate | 16.25 | 1290 | 1291 | 2.07 | 0.04 |
61. | Carvacrol | 16.48 | 1299 | 1299 | 0.03 | 0.03 |
62. | Bicycloelemene | 17.29 | 1330 | 1331 | 0.12 | 0.01 |
63. | Linalyl propionate | 17.38 | 1333 | 1333 | 0.02 | 0.01 |
64. | δ-Elemene | 17.51 | 1338 | 1339 | 0.09 | 0.03 |
65. | Piperitenone | 17.60 | 1342 | 1343 | 0.03 | 0.03 |
66. | α-Cubebene | 17.81 | 1350 | 1351 | 0.53 | 0.04 |
67. | Thymol acetate | 17.93 | 1355 | 1355 | 0.10 | 0.05 |
68. | Neryl acetate | 18.17 | 1364 | 1364 | 0.36 | 0.01 |
69. | Capric acid | 18.46 | 1375 | 1374 | 0.03 | 0.01 |
70. | 3-Methyltridecane | 18.54 | 1378 | 1377 | 0.03 | 0.01 |
71. | Geranyl acetate | 18.67 | 1383 | 1384 | 0.79 | 0.01 |
72. | Geranyl acetate | 18.73 | 1385 | 1385 | 0.07 | 0.00 |
73. | β-Cubenene | 18.79 | 1388 | 1388 | 0.03 | 0.02 |
74. | β-Bourbonene | 18.88 | 1391 | 1390 | 0.08 | 0.01 |
75. | Longifolene | 19.27 | 1406 | 1407 | 0.07 | 0.01 |
76. | Dodecanal | 19.35 | 1410 | 1410 | 0.02 | 0.00 |
77. | cis-α-Bergamotene | 19.52 | 1417 | 1416 | 0.06 | 0.00 |
78. | β-Caryophyllene | 19.68 | 1423 | 1423 | 2.87 | 0.16 |
79. | trans-α-Bergamotene | 20.03 | 1437 | 1438 | 0.45 | 0.03 |
80. | Aromadendrene | 20.28 | 1447 | 1447 | 0.04 | 0.00 |
81. | (E)-β-Farnesene | 20.52 | 1457 | 1458 | 1.25 | 0.10 |
82. | Alloalomadendrene | 20.60 | 1460 | 1462 | 0.03 | 0.01 |
83. | α-Humulene | 20.71 | 1465 | 1465 | 0.08 | 0.01 |
84. | γ-Muurolene | 21.20 | 1484 | 1485 | 0.36 | 0.14 |
85. | β-Selinene | 21.26 | 1487 | 1486 | 0.02 | 0.02 |
86. | Bicyclogermacrene | 21.63 | 1502 | 1503 | 0.06 | 0.01 |
87. | β-Bisabolen | 21.81 | 1509 | 1509 | 0.31 | 0.02 |
88. | γ-Cadinene | 21.98 | 1517 | 1517 | 0.26 | 0.01 |
89. | β-Sesquiphellandrene | 22.08 | 1521 | 1522 | 0.02 | 0.00 |
90. | δ-Cadinene | 22.18 | 1525 | 1524 | 0.10 | 0.02 |
91. | Germacrene B | 22.90 | 1556 | 1557 | 0.06 | 0.02 |
92. | Caryophyllene oxide | 23.63 | 1587 | 1589 | 0.64 | 0.20 |
93. | Humulene epoxide II | 24.35 | 1618 | 1619 | 0.02 | 0.00 |
94. | α-Muurolol | 24.91 | 1643 | 1645 | 0.18 | 0.01 |
95. | α-Bisabolol | 25.83 | 1685 | 1683 | 0.16 | 0.02 |
Total identified [%] | 99.70 |
Sample Name | Coat Weight [g/m2] | Cohesion | Adhesion [N/25 mm] | |
---|---|---|---|---|
20 °C | 70 °C | |||
DT54 | 73 | >72 h (c.f) | >72 h (c.f) | 27.2 |
DT54-IBU | 92 | 22 s (c.f) | 48 s (c.f) | 22.0 |
DT54-LEO5% | 66 | 31 h 20 min (c.f) | 40 min (c.f) | 22.7 |
DT54-IBU-LEO5% | 82 | 11 s (c.f) | 5 s (c.f) | 19.0 |
Sample Name | Td5% (°C) | Td50% (°C) | TMDT (°C) | Tg (°C) |
---|---|---|---|---|
Acrylic pressure-sensitive adhesives (before cross-linking) | ||||
DT54 | 52.3 | 355.1 | 366.5 | −50 |
DT54-IBU | 67.9 | 321.6 | 365.4 | −65 |
DT54-LEO5% | 49.0 | 356.0 | 368.9 | −65 |
DT54-IBU-LEO5% | 63.6 | 329.0 | 357.1 | −65 |
Adhesive films from obtained patches (after cross-linking) | ||||
DT54 | 287.3 | 367.1 | 364.6 | −40 |
DT54-IBU | 190.5 | 344.9 | 336.9 | −50 |
DT54-LEO5% | 291.8 | 364.1 | 366.3 | −45 |
DT54-IBU-LEO5% | 180.8 | 354.0 | 372.2 | −50 |
Sample Name | % RSA |
---|---|
DT54-IBU | 1.22 ± 0.28 a |
DT54-IBU-LEO5% | 11.50 ± 0.40 b |
LEO | 79.13 ± 0.98 |
Sample Name | Cumulative Permeation Mass [µg cm−2] | JSS [µg cm−2 h] | KP [cm h−1] | Q%24 h |
---|---|---|---|---|
DT54-IBU | 58.435 ± 3.689 | 9.292 ± 1.891 | 6.504 ± 1.323 | 4.09 ± 0.26 |
DT54-IBU-LEO5% | 130.998 ± 8.088 | 11.921 ± 3.481 | 8.344 ± 2.436 | 9.169 ± 0.57 |
Sample Name | Adhesive Mass [g] | Ibuprofen Mass [g] | Lavender Essential Oil Mass [g] | Solvent Mass [g] |
---|---|---|---|---|
DT54 | 6.765 | - | - | 1.5 |
DT54-IBU | 6.765 | 1.500 | - | 1.5 |
DT54-LEO5% | 6.765 | - | 0.168 | 1.5 |
DT54-IBU-LEO5% | 6.765 | 1.500 | 0.168 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyburtowicz, K.; Bednarczyk, P.; Nowak, A.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Wesołowska, A.; Ossowicz-Rupniewska, P. Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil. Int. J. Mol. Sci. 2024, 25, 6171. https://doi.org/10.3390/ijms25116171
Zyburtowicz K, Bednarczyk P, Nowak A, Muzykiewicz-Szymańska A, Kucharski Ł, Wesołowska A, Ossowicz-Rupniewska P. Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil. International Journal of Molecular Sciences. 2024; 25(11):6171. https://doi.org/10.3390/ijms25116171
Chicago/Turabian StyleZyburtowicz, Karolina, Paulina Bednarczyk, Anna Nowak, Anna Muzykiewicz-Szymańska, Łukasz Kucharski, Aneta Wesołowska, and Paula Ossowicz-Rupniewska. 2024. "Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil" International Journal of Molecular Sciences 25, no. 11: 6171. https://doi.org/10.3390/ijms25116171
APA StyleZyburtowicz, K., Bednarczyk, P., Nowak, A., Muzykiewicz-Szymańska, A., Kucharski, Ł., Wesołowska, A., & Ossowicz-Rupniewska, P. (2024). Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil. International Journal of Molecular Sciences, 25(11), 6171. https://doi.org/10.3390/ijms25116171