Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Definitions
2.3. Data Collection
2.4. Sample Size Calculation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassetti, M.; Giacobbe, D.R.; Aliberti, S.; Barisione, E.; Centanni, S.; De Rosa, F.G.; Di Marco, F.; Gori, A.; Granata, G.; Mikulska, M.; et al. Balancing evidence and frontline experience in the early phases of the COVID-19 pandemic: Current position of the Italian Society of Anti-infective Therapy (SITA) and the Italian Society of Pulmonology (SIP). Clin. Microbiol. Infect. 2020, 26, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Ball, L.; Patroniti, N.; Loconte, M.; Brunetti, I.; Vena, A.; Giacobbe, D.R.; Bassetti, M.; Rocco, P.R.M.; et al. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir. Physiol. Neurobiol. 2020, 279, 103455. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Francois, B.; Laterre, P.F.; Luyt, C.E.; Chastre, J. The challenge of ventilator-associated pneumonia diagnosis in COVID-19 patients. Crit. Care 2020, 24, 289. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med. 2020, 14, 865–868. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; De Maria, A.; Dentone, C.; Di Biagio, A.; et al. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef]
- Li Bassi, G.; Panigada, M.; Ranzani, O.T.; Zanella, A.; Berra, L.; Cressoni, M.; Parrini, V.; Kandil, H.; Salati, G.; Selvaggi, P.; et al. Randomized, multicenter trial of lateral Trendelenburg versus semirecumbent body position for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2017, 43, 1572–1584. [Google Scholar] [CrossRef]
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020, 8, 506–517. [Google Scholar] [CrossRef]
- Food and Drug Administration. Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Developing Drugs for Treatment Guidance for Industry. 2020. Available online: https://www.fda.gov/media/79516/download (accessed on 6 September 2020).
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative Workgroup. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothman, K.J.; Boice, J.D., Jr. Epidemiologic Analysis with a Programmable Calculator; NIH Publication: Bethesda, MD, USA, 1979. [Google Scholar]
- Bonell, A.; Azarrafiy, R.; Huong, V.T.L.; Viet, T.L.; Phu, V.D.; Dat, V.Q.; Wertheim, H.; van Doorn, H.R.; Lewycka, S.; Nadjm, B. A Systematic Review and Meta-analysis of Ventilator-associated Pneumonia in Adults in Asia: An Analysis of National Income Level on Incidence and Etiology. Clin. Infect. Dis. 2019, 68, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Dudeck, M.A.; Horan, T.C.; Peterson, K.D.; Allen-Bridson, K.; Morrell, G.; Anttila, A.; Pollock, D.A.; Edwards, J.R. National Healthcare Safety Network report, data summary for 2011, device-associated module. Am. J. Infect. Control 2013, 41, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Koulenti, D.; Tsigou, E.; Rello, J. Nosocomial pneumonia in 27 ICUs in Europe: Perspectives from the EU-VAP/CAP study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1999–2006. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Maes, M.; Higginson, E.; Pereira-Dias, J.; Curran, M.D.; Parmar, S.; Khokhar, F.; Cuchet-Lourenço, D.; Lux, J.; Sharma-Hajela, S.; Ravenhill, B.; et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit. Care 2021, 25, 25. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Demoule, A.; Pham, T.; Combes, A.; Dres, M.; Lebbah, S.; Kimmoun, A.; Mercat, A.; Beduneau, G.; et al. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Mikulska, M.; Nicolini, L.A.; Signori, A.; Di Biagio, A.; Sepulcri, C.; Russo, C.; Dettori, S.; Berruti, M.; Sormani, M.P.; Giacobbe, D.R.; et al. Tocilizumab and steroid treatment in patients with COVID-19 pneumonia. PLoS ONE 2020, 15, e0237831. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Arrestier, R.; Haudebourg, A.F.; Benelli, B.; Carteaux, G.; Decousser, J.W.; Fourati, S.; Woerther, P.L.; Schlemmer, F.; Charles-Nelson, A.; et al. Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit. Care 2020, 24, 699. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Boulle Geronimi, C.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021. [Google Scholar] [CrossRef]
- Siempos, I.I.; Vardakas, K.Z.; Kyriakopoulos, C.E.; Ntaidou, T.K.; Falagas, M.E. Predictors of mortality in adult patients with ventilator-associated pneumonia: A meta-analysis. Shock 2010, 33, 590–601. [Google Scholar] [CrossRef]
- Torres, A.; Martin-Loeches, I. Invasive Pulmonary Aspergillosis in Ventilator-associated Pneumonia: The Hidden Enemy? Am. J. Respir. Crit. Care Med. 2020, 202, 1071–1073. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [Green Version]
Variable | No. of Patients 171 (100) |
---|---|
Demographics | |
Age in years, median (IQR) | 64 (57–71) |
Male gender | 137 (80) |
BMI in kg/m2, median (IQR) | 28 (25–30) |
Baseline comorbidities | |
Diabetes mellitus | 39 (23) |
Hypertension | 109 (64) |
Smoking/respiratory disease | 27 (16) |
End-stage renal disease | 10 (6) |
Moderate/severe liver failure | 3 (2) |
Neurologic disease | 6 (4) |
Solid cancer | 11 (6) |
Hematological malignancy | 4 (2) |
HIV infection | 0 (0) |
Previous antibiotic therapy * | |
Any | 162 (95) |
Semisynthetic penicillins | 76 (44) |
Cephalosporins | 88 (52) |
Carbapenems | 25 (15) |
Polymyxins | 2 (1) |
Glycopeptides | 10 (6) |
Oxazolidinones | 38 (22) |
Macrolides | 78 (46) |
Fluoroquinolones | 5 (3) |
Aminoglycosides | 0 (0) |
Previous anti-inflammatory therapy * | |
Steroids | 108 (63) |
NSAIDs | 40 (23) |
Chloroquine/Hydroxychloroquine | 159 (93) |
Anti-IL-6 receptor monoclonal antibodies | 109 (64) |
Monoclonal IL-1 receptor antagonists | 5 (3) |
VAP characteristics | |
Days of invasive ventilation before VAP, median (IQR) | 9 (5–15) |
SOFA score at VAP onset, median (IQR) | 7 (4–9) |
Tracheostomy before VAP | 49 (29) |
Presence of septic shock at VAP onset | 80 (47) |
Presence of ARDS at VAP onset | 132 (77) |
Presence of AKI at VAP onset | 41 (24) |
Need for hemodialytic therapy at VAP onset | 17 (10) |
Need for ECMO at VAP onset | 13 (8) |
Presence of coagulative disorders at VAP onset | |
None | 132 (77) |
Thrombotic | 20 (12) |
Hemorrhagic | 17 (10) |
Both | 2 (1) |
Bronchoscopy with BALF collection at VAP onset | |
Not performed | 92 (54) |
Negative BALF culture | 2 (1) |
Positive BALF culture | 77 (45) |
BSI at VAP diagnosis ** | 76 (44) |
VAP treatment | |
Antibiotic treatment within 24 h of VAP onset | 125 (73) |
IgM-enriched intravenous immunoglobulins | 10 (6) |
Cytokine blood filtration | 18 (11) |
Outcome | |
30-day case fatality | 78 (46) |
Variable | Non-Survivors 78 (46) | Survivors 93 (54) | OR (95% CI) | p |
---|---|---|---|---|
Demographics | ||||
Age in years, median (IQR) | 62 (57–72) | 66 (57–71) | 1.00 (0.97–1.03) | 0.930 |
Male gender | 63 (81) | 74 (80) | 1.08 (0.51–2.30) | 0.845 |
BMI in kg/m2, median (IQR) | 28 (25–31) | 27 (25–30) | 1.00 (0.99–1.02) | 0.812 |
Baseline comorbidities | ||||
Diabetes mellitus | 20 (26) | 19 (20) | 1.34 (0.66–2.75) | 0.419 |
Hypertension | 49 (63) | 60 (65) | 0.93 (0.50–1.74) | 0.818 |
Smoking/respiratory disease | 15 (19) | 29 (31) | 0.53 (0.26–1.07) | 0.077 |
End-stage renal disease | 6 (8) | 4 (4) | 1.85 (0.50–6.82) | 0.353 |
Moderate/severe liver failure | 2 (3) | 1 (1) | 2.42 (0.22–27.22) | 0.474 |
Neurologic disease | 2 (3) | 4 (4) | 0.59 (0.10–3.29) | 0.543 |
Solid cancer | 4 (5) | 7 (8) | 0.66 (0.19–2.36) | 0.527 |
Hematological malignancy | 3 (4) | 1 (1) | 3.68 (0.38–36.11) | 0.263 |
HIV infection | 0 (0) | 0 (0) | - | - |
Previous antibiotic therapy | ||||
Any | 72 (92) | 90 (97) | 0.40 (0.10–1.66) | 0.206 |
Semisynthetic penicillins | 36 (46) | 40 (43) | 1.14 (0.62–2.08) | 0.680 |
Cephalosporins | 35 (45) | 53 (57) | 0.61 (0.34–1.13) | 0.115 |
Carbapenems | 11 (14) | 14 (15) | 0.93 (0.39–2.18) | 0.861 |
Polymyxins * | 0 (0) | 2 (2) | 0.23 (0.00–2.92) | 0.444 |
Glycopeptides | 6 (8) | 4 (4) | 1.85 (0.50–6.82) | 0.353 |
Oxazolidinones | 18 (23) | 20 (22) | 1.10 (0.53–2.26) | 0.806 |
Macrolides | 33 (42) | 45 (48) | 0.78 (0.43–1.43) | 0.427 |
Fluoroquinolones | 3 (4) | 2 (2) | 1.82 (0.30–11.18) | 0.518 |
Aminoglycosides | 0 (0) | 0 (0) | - | - |
Previous anti-inflammatory therapy | ||||
Steroids | 51 (65) | 57 (61) | 1.19 (0.64–2.23) | 0.581 |
NSAIDs | 13 (17) | 27 (29) | 0.49 (0.23–1.03) | 0.060 |
Chloroquine/Hydroxychloroquine | 71 (91) | 88 (95) | 0.58 (0.18–1.89) | 0.364 |
Anti-IL-6 receptor monoclonal antibodies | 43 (55) | 66 (71) | 0.50 (0.27–0.95) | 0.033 |
Monoclonal IL-1 receptor antagonists | 3 (4) | 2 (2) | 1.82 (0.30–11.18) | 0.518 |
VAP characteristics | ||||
Days of invasive ventilation before VAP, median (IQR) | 9 (5–14) | 10 (5–17) | 0.99 (0.95–1.02) | 0.487 |
SOFA score at VAP onset, median (IQR) | 8 (5–11) | 6 (3–8) | 1.21 (1.09–1.33) | <0.001 |
Tracheostomy before VAP | 16 (21) | 33 (36) | 0.47 (0.23–0.94) | 0.033 |
Presence of septic shock at VAP onset | 48 (62) | 32 (34) | 3.05 (1.63–5.70) | <0.001 |
Presence of ARDS at VAP onset | 74 (95) | 58 (62) | 11.16 (3.75–33.21) | <0.001 |
Presence of AKI at VAP onset | 25 (32) | 16 (17) | 2.27 (1.11–4.66) | 0.025 |
Need for hemodialytic therapy at VAP onset | 12 (15) | 5 (5) | 3.20 (1.08–9.53) | 0.037 |
Need for ECMO at VAP onset | 11 (14) | 2 (2) | 7.47 (1.60–34.82) | 0.010 |
Presence of coagulative disorders at VAP onset * | 0.188 | |||
None | 59 (76) | 73 (79) | Ref. | |
Thrombotic | 6 (8) | 14 (15) | 0.55 (0.19–1.44) | |
Hemorrhagic | 11 (14) | 6 (7) | 2.19 (0.81–6.41) | |
Both | 2 (3) | 0 (0) | 6.18 (0.49–858.32) | |
BALF collection for culture at VAP onset | 33 (42) | 46 (50) | 0.75 (0.41–1.37) | 0.350 |
BSI at VAP onset | 33 (42) | 43 (46) | 0.85 (0.47–1.56) | 0.607 |
VAP treatment | ||||
Antibiotic treatment within 24 h of VAP onset | 57 (73) | 68 (73) | 1.00 (0.51–1.97) | 0.995 |
IgM-enriched intravenous immunoglobulins | 7 (9) | 3 (3) | 2.96 (0.74–11.85) | 0.126 |
Cytokine blood filtration | 8 (10) | 10 (11) | 0.95 (0.36–2.53) | 0.916 |
Model A (AIC 201.9) | OR (95% CI) | p |
Smoking/respiratory disease | 0.57 (0.24–1.38) | 0.213 |
Previous NSAIDs | 1.14 (0.38–3.42) | 0.811 |
Previous anti-IL-6 receptor monoclonal antibodies | 0.68 (0.32–1.45) | 0.316 |
Tracheostomy before VAP | 0.50 (0.22–1.16) | 0.108 |
SOFA score at VAP onset | 1.07 (0.93–1.24) | 0.326 |
Presence of septic shock at VAP onset | 3.30 (1.43–7.61) | 0.005 * |
Presence of ARDS at VAP onset | 13.21 (3.05–57.26) | <0.001 * |
Presence of AKI at VAP onset | 0.62 (0.23–1.66) | 0.340 |
Need for hemodialytic therapy at VAP onset | 3.11 (0.79–12.2) | 0.104 |
Need for ECMO at VAP onset | 3.19 (0.55–18.56) | 0.197 |
Antibiotic treatment within 24 h of VAP onset | 0.67 (0.27–1.63) | 0.337 |
Model B ** (AIC 203.0) | OR (95% CI) | p |
Smoking/respiratory disease | 0.54 (0.22–1.34) | 0.185 |
Previous NSAIDs | 1.44 (0.40–5.20) | 0.581 |
Previous anti-IL-6 receptor monoclonal antibodies | 0.66 (0.29–1.49) | 0.317 |
Tracheostomy before VAP | 0.47 (0.19–1.15) | 0.100 |
SOFA score at VAP onset | 1.12 (0.93–1.34) | 0.238 |
Presence of septic shock at VAP onset | 3.22 (1.33–7.80) | 0.010 * |
Presence of ARDS at VAP onset | 12.71 (2.74–58.89) | 0.001 * |
Presence of AKI at VAP onset | 0.64 (0.23–1.82) | 0.404 |
Need for hemodialytic therapy at VAP onset | 3.08 (0.73–13.00) | 0.126 |
Need for ECMO at VAP onset | 2.35 (0.34–16.28) | 0.387 |
Antibiotic treatment within 24 h of VAP onset | 0.66 (0.26–1.66) | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacobbe, D.R.; Battaglini, D.; Enrile, E.M.; Dentone, C.; Vena, A.; Robba, C.; Ball, L.; Bartoletti, M.; Coloretti, I.; Di Bella, S.; et al. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. J. Clin. Med. 2021, 10, 555. https://doi.org/10.3390/jcm10040555
Giacobbe DR, Battaglini D, Enrile EM, Dentone C, Vena A, Robba C, Ball L, Bartoletti M, Coloretti I, Di Bella S, et al. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. Journal of Clinical Medicine. 2021; 10(4):555. https://doi.org/10.3390/jcm10040555
Chicago/Turabian StyleGiacobbe, Daniele Roberto, Denise Battaglini, Elisa Martina Enrile, Chiara Dentone, Antonio Vena, Chiara Robba, Lorenzo Ball, Michele Bartoletti, Irene Coloretti, Stefano Di Bella, and et al. 2021. "Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study" Journal of Clinical Medicine 10, no. 4: 555. https://doi.org/10.3390/jcm10040555
APA StyleGiacobbe, D. R., Battaglini, D., Enrile, E. M., Dentone, C., Vena, A., Robba, C., Ball, L., Bartoletti, M., Coloretti, I., Di Bella, S., Di Biagio, A., Brunetti, I., Mikulska, M., Carannante, N., De Maria, A., Magnasco, L., Maraolo, A. E., Mirabella, M., Montrucchio, G., ... Bassetti, M. (2021). Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. Journal of Clinical Medicine, 10(4), 555. https://doi.org/10.3390/jcm10040555