An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Plazomicin
3.2. Eravacycline
3.3. Temocillin
3.4. Cefiderocol
3.5. Beta-Lactam/Beta-Lactamase Inhibitor
3.6. Ceftazidime/Avibactam
3.7. Ceftolozane/Tazobactam
3.8. Meropenem/Vaborbactam
3.9. Imipenem-Cilastatin/Relebactam
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BD | twice daily |
BL/BLI | beta-lactam, beta-lactam inhibitor. |
IV | intravenous |
PO | by mouth |
QD | once a day |
QID | four times a day |
TID | three times daily |
CPE | carbapenem-producing Enterobacterales |
CRE | carbapenem-resistant Enterobacterales |
ESBL | extended-spectrum beta-lactamases |
MBL | metallo-beta-lactamase. |
MDR | multidrug resistance |
cIAI | complicated intra-abdominal infections |
cUTI | complicated urinary tract infections |
HAP/VAP | hospital-acquired pneumonia/ventilator-associated pneumonia |
APACHE score | Acute Physiology and Chronic Health Evaluation score |
BLI | beta-lactamase inhibitor |
MIC | minimum inhibitory concentration |
RCT | randomized control trial |
RR | relative risk. |
References
- Vincent, J.-L.; Rello, J.; Reinhart, K.; Marshall, J.K.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; EPIC II Group of Investigators; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, 01076-18. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-β-lactamases: The quiet before the storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-Price, L.S.; Poirel, L.A.; Bonomo, R.; Schwaber, M.J.; Daikos, G.L.; Cormican, M.; Cornaglia, G.; Garau, J.; Gniadkowski, M.; Hayden, M.K.; et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 2013, 13, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasner, C.; Albiger, B.; Buist, G.; Tambić, A.A.; Canton, R.; Carmeli, Y. Carbapenemase-producing Enterobacte-riaceae in Europe: A survey among national experts from 39 countries, February 2013. Eurosurveillance 2013, 18, 20525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaeer, K.M.; Zmarlicka, M.T.; Chahine, E.B.; Piccicacco, N.; Cho, J.C. Plazomicin: A next-generation aminoglycoside. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 77–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eljaaly, K.; Alharbi, A.; AlShehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef]
- Tang, H.-J.; Lai, C.-C. Plazomicin-associated nephrotoxicity. Clin. Infect. Dis. 2019, 71, 1130–1131. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Woosley, L.N.; Serio, A.W.; Krause, K.M.; Flamm, R.K. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 3346–3354. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.R.; Fuller, J.A.; Nichol, K.; Denisuik, A.J.; Golden, A.R.; Hink, R.; Lagacé-Wiens, P.R.S.; Walkty, A.; et al. 42936 pathogens from Canadian hospitals: 10 years of results (2007–16) from the CANWARD surveillance study. J. Antimicrob. Chemother. 2019, 74, iv5–iv21. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R.; Good, C.E.; Patel, R.; Arias, C.A.; Kreiswirth, B.N.; Rojas, L.J.; D’Souza, R.; White, R.C.; Brinkac, L.M.; Nguyen, K.; et al. Argonaut II study of the in vitro activity of plazomicin against carbapenemase-producing klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Castanheira, M.; Sader, H.S.; Mendes, R.E.; Jones, R.N. Activity of plazomicin tested against enterobacterales isolates collected from U.S. Hospitals in 2016–2017: Effect of different breakpoint criteria on susceptibility rates among aminoglycosides. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Cox, G.; Ejim, L.; Wright, G.D.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E.; Sieron, A.O.; Savchenko, A.; Serio, A.W.; et al. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis. 2018, 4, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Denervaud-Tendon, V.; Poirel, L.E.; Connolly, L.; Krause, K.M.; Nordmann, P. Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates. J. Antimicrob. Chemother. 2017, 72, 2787–2791. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, E.; Miller, L.G.; Friedland, I.; Dwyer, J.P.; et al. Once-daily plazomicin for com-plicated urinary tract infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef]
- Connolly, L.E.; Riddle, V.; Cebrik, D.; Armstrong, E.S.; Miller, L.G. A multicenter, randomized, double-blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Klause, K.M.; Daikos, G.L. Plazomicin for infections caused by car-bapenem-resistant Enterobacteriaceae. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.; Sobel, J.D.; Newell, P.; Armstrong, J.; Huang, X.; Stone, G.G.; Yates, K.; Gasink, L.B. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: Recapture, a phase 3 randomized trial program. Clin. Infect. Dis. 2016, 63, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Popejoy, M.W.; Paterson, D.L.; Cloutier, D.; Huntington, J.A.; Miller, B.; Bliss, C.A.; Steenbergen, J.N.; Hershberger, E.; Umeh, O.; Kaye, K.S. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: A pooled analysis of Phase 3 clinical trials. J. Antimicrob. Chemother. 2016, 72, 268–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Kaye, K.S.; Bhowmick, T.; Metallidis, S.; Bleasdale, S.C.; Sagan, O.S.; Stus, V.; Vasquez, J.; Zaitsev, V.; Bidair, M.; Giamarellos-Bourboulis, E.J.; et al. Effect of meropenem-vaborbactam vs piperacil-lin-Tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection the TANGO I randomized clinical trial. JAMA J. Am. Med. Assoc. 2018, 319, 788–789. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Kaye, K.S.; et al. Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect Dis Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motsch, J.; De Oliveira, C.M.; Du, J.; Joeng, H.-K.; Tipping, R.W.; Aggrey, A.; Young, K.; Kartsonis, N.A.; Butterton, J.R.; Paschke, A.; et al. Restore-imi 1: A multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/Relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Heaney, M.; Mahoney, M.V.; Gallagher, J.C. Eravacycline: The tetracyclines strike back. Ann. Pharmacother. 2019, 53, 1124–1135. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Baxter, M.R.; Adam, H.J.; Sutcliffe, J.; Karlowsky, J.A. In vitro activity of eravacycline against 2213 Gram-negative and 2424 Gram-positive bacterial pathogens isolated in Canadian hospital laboratories: CANWARD surveillance study 2014–2015. Diagn. Microbiol. Infect. Dis. 2018, 91, 55–62. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, B.S.; Warner, A.M.; Woodforda, A.N. In vitro activity of eravacycline against carbapenem-Resistant enterobacteriaceae and acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 3840–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, B.D.; Thuras, P.; Porter, S.B.; Anacker, M.; VonBank, B.; Vagnone, P.S.; Witwer, M.; Castanheira, M.; Johnsonet, J.R. Activity of cefiderocol, ceftazidime-avibactam, and eravacycline against carbapenem-resistant escherichia coli isolates from the united states and international sites in re-lation to clonal background, resistance genes, coresistance, and region. Antimicrob. Agents Chemother. 2020, 64, e00797-20. [Google Scholar] [CrossRef]
- Fyfe, C.; LeBlanc, G.; Close, B.; Nordmann, P.; Dumas, J.; Grossman, T.H. Eravacycline is active against bacterial isolates expressing the polymyxin resistance gene mcr-1. Antimicrob. Agents Chemother. 2016, 60, 6989–6990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. Ignite4: Results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin. Infect. Dis. 2018, 69, 921–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomkin, J.; Evans, D.; Slepavicius, A.; Lee, P.; Marsh, A.; Tsai, L.; Sutcliffe, J.A.; Horn, A. Assessing the efficacy and safety of Eravacycline vs Ertapenem in complicated intra-abdominal infections in the investigating gram-negative infections treated with erava-cycline (IGNITE 1) trial a randomized clinical trial. JAMA Surg. 2017, 152, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Alosaimy, S.; Molina, K.C.; Claeys, K.C.; Andrade, J.; Truong, J.; King, M.A.; Pullinger, M.B.; Huang, G.; Morrisette, T.; Lagnf, A.M.; et al. Early experience with eravacycline for complicated infections. Open For. Infect. Dis. 2020, 7, ofaa071. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Tran, B.G.; Kim, M.J.; Wang, L.; Nguyen, D.A.; Chen, Q.; Song, J.; Laud, P.J.; Store, G.G.; Chow, J.W. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int. J. Antimicrob. Agents. 2017, 49, 579–588. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Gasink, L.B.; Armstrong, J.; Broadhurst, H.; Stone, G.G.; Rank, D.; Llorens, L.; Newell, P.; Pachl, J. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: Results from a randomized, controlled, double-blind, phase 3 program. Clin. Infect. Dis. 2016, 62, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Lucasti, C.; Hershberger, E.; Miller, B.; Yankelev, S.; Steenbergen, J.; Friedland, I.; Solomkin, J. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob. Agents Chemother. 2014, 58, 5350–5357. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.; Popejoy, M.W.; Hershberger, E.; Steenbergen, J.N.; Alverdy, J. Characteristics and outcomes of complicated in-tra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob. Agents Chemother. 2016, 60, 4387–4390. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.; Hershberger, E.; Eckmann, C.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; et al. Ceftolozane/Tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: Results from a randomized, double-blind, phase 3 trial (Aspect-ciai). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Tulkens, P.M. Temocillin revived. J. Antimicrob. Chemother. 2008, 63, 243–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, I.; Awad-El-Kariem, F.M.; Aali, A.; Kumari, P.; Mulla, R.; Tan, B.; Brudney, D.; Ladenheim, D.; Ghazy, A.; Khan, I.; et al. Temocillin use in England: Clinical and mi-crobiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing En-terobacteriaceae. J. Antimicrob. Chemother. 2011, 66, 2628–2631. [Google Scholar] [CrossRef] [Green Version]
- Adams-Haduch, J.M.; Paterson, D.L.; Doi, Y.; Potoski, B.A.; Sidjabat, H.E. Activity of Temocillin against KPC-Producing Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 2009, 53, 2700–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakris, A.; Koumaki, V.; Politi, L.; Balakrishnan, I.; Tsakris, A. Activity of temocillin against KPC-producing Enterobacteriaceae clinical isolates. Int. J. Antimicrob. Agents 2020, 55, 105843. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Golden, A.R.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Iii, J.P.L.; Karlowsky, J.A.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Jacobs, M.R.; Abdelhamed, A.M.; Kreiswirth, B.N.; Greco, C.; Fouts, D.E.; Bonomo, R.A.; Good, C.E.; Rhoads, D.D.; Hujer, K.M.; Hujer, A.M.; et al. Argonaut-I: Activity of cefiderocol (S-649266), a siderophore cephalosporin, against gram-negative bacteria, including carbapenem-resistant nonfermenters and enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob. Agents Chemother. 2018, 63. [Google Scholar] [CrossRef] [Green Version]
- Kresken, M.; Korte-Berwanger, M.; Gatermann, S.G.; Pfeifer, Y.; Pfennigwerth, N.; Seifert, H.; Werner, G. In vitro activity of cefiderocol against aerobic Gram-negative bacterial pathogens from Germany. Int. J. Antimicrob. Agents 2020, 56, 106128. [Google Scholar] [CrossRef]
- Kresken, M.; Körber-Irrgang, B.; Pfeifer, Y.; Werner, G. Activity of temocillin against CTX-M-producing Escherichia coli and Klebsiella pneumoniae from Germany. Int. J. Antimicrob. Agents 2018, 51, 159–160. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Nagata, T.D.; et al. Cefiderocol versus high-dose, extend-ed-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, dou-ble-blind, phase 3, non-inferiority trial. Lancet. Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Menichetti, F.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; et al. Cefiderocol as rescue therapy for acinetobacter baumannii and other carbapenem-resistant gram-negative infections in intensive care unit patients. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-lactamase inhibitor combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.; van Duin, D. Novel beta-lactamase inhibitors: Unlocking their potential in therapy. Drugs 2017, 77, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Flamm, R.K.; Carvalhaes, C.G.; Castanheira, M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 2020, 96, 114833. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem–relebactam and meropenem–vaborbactam: Two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Carvalhaes, C.G.; Streit, J.M.; Doyle, T.B.; Castanheira, M. Antimicrobial activity of ceftazidime-avibactam, ceftolozane-tazobactam and comparators tested against pseudomonas aeruginosa and klebsiella pneumoniae isolates from united states medical centers in 2016–2018. Microb. Drug Resist. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.C.; Hortaç, E.; Koçak, A.A.; Demirkaya, M.H.; Yayla, B.; Güçlü, A.Ü.; Başustaoğlu, A. In vitro activity of ceftolozane–tazobactam and ceftazidime–avibactam against clinical isolates of meropenem-non-susceptible Pseudomonas aeruginosa: A two-centre study. J. Glob. Antimicrob. Resist. 2020, 20, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Zhao, X.-Y.; Zhang, Z.-L.; Gu, Z.-C.; Zhang, C.; Gao, Y.; Cui, M. Evaluation of the efficacy and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial infections: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 52, 443–450. [Google Scholar] [CrossRef]
- Stone, G.G.; Newell, P.; Gasink, L.B.; Broadhurst, H.; Wardman, A.; Yates, K.; Chen, Z.; Song, J.; Chow, J.W. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: Pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J. Antimicrob. Chemother. 2018, 73, 2519–2523. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Burno, C.J.; Rhee, E.G.; et al. Ceftolozane–tazobactam versus mero-penem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher., H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/Cilastatin/Relebactam versus piperacil-lin/Tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (Restore-imi 2 study). Clin. Infect. Dis. 2020, ciaa803. [Google Scholar] [CrossRef]
- Shortridge, D.; Castanheira, M.; Pfaller, M.A.; Flamm, R.K. Ceftolozane-tazobactam activity against pseudomonas aeruginosa clinical isolates from U.S. Hospitals: Report from the pacts antimicrobial surveillance program, 2012 to 2015. Antimicrob. Agents Chemother. 2017, 61, e00465-17. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.-C.; Liu, C.-E.; Lu, P.-L.; Chen, Y.-S.; Lu, M.-C.; Ko, W.-C.; Hsueh, P.-R.; Chuang, Y.-C.; Wang, F.-D. Activity of ceftolozane-tazobactam against Gram-negative pathogens isolated from lower respiratory tract infections in the Asia-Pacific region: SMART 2015–2016. Int. J. Antimicrob. Agents 2020, 55, 105883. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.K.; Sahm, D.F. In vitro activity of WCK 5222 (Cefepime-zidebactam) against worldwide collected gram-negative bacilli not susceptible to carbapenems. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Duncan, L.R.; Flamm, R.K.; Shortridge, D. Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012–18. J. Antimicrob. Chemother. 2020, 75, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Perez, F.; et al. Ceftolozane/tazobactam vs polymyxin or aminogly-coside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Castón, J.J.; Gallo, M.; García, M.; Cano, A.; Escribano, A.; Machuca, I.; Gracia-Aufinger, I.; Guzman-Puche, J.; Pérez-Nadales, E.; Recio, M.; et al. Ceftazidime-avibactam in the treatment of infections caused by KPC-producing Klebsiella pneumoniae: Factors associated with clinical efficacy in a single-center cohort. Int. J. Antimicrob. Agents 2020, 56, 106075. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Satlin, M.J.; Claeys, K.C.; Hiles, J.; Vyas, N.M.; Bland, C.M.; Suh, J.; Biason, K.; McCoy, D.; A King, M.; et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant pseudomonas aeruginosa infections: A multicenter study. Open Forum Infect. Dis. 2018, 5, ofy280. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, M.; Nelson, D.; O’Neal, M.; Gould, A.P.; Bouchard, J.; Nicolau, D.; Bookstaver, P.B. Use of continuous-infusion ceftolozane/tazobactam for resistant Gram-negative bacterial infections: A retrospective analysis and brief review of the literature. Int. J. Antimicrob. Agents. 2020, 56, 106158. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Falcone, M.; Tiseo, G.; Giannella, M.; Pascale, R.; Meschiari, M.; DiGaetano, M.; Oliva, A.; et al. Ceftolozane/Tazobactam for treatment of severe ESBL-producing enterobacterales infections: A multicenter nationwide clinical experience (CEFTABUSE II Study). Open Forum Infect. Dis. 2020, 7, ofaa139. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, S.; Kawahara, K.; Kawahara, M.; Yasuda, M.; Fujimoto, G.; Sato, A.; Yokokawa, R.; Yoshinari, T.; Rhee, E.G.; Aoyama, N. The efficacy and safety of tazobac-tam/ceftolozane in Japanese patients with uncomplicated pyelonephritis and complicated urinary tract infection. J. Infect. Chemother. 2019, 25, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant enterobacteriaceae infections. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Alosaimy, S.; Jorgensen, S.C.J.; Athans, V.; Saw, S.; Yost, C.N.; Davis, S.L.; Rybak, M.J.; Lagnf, A.M.; Melvin, S.; Mynatt, R.P.; et al. Real-world multicenter analysis of clinical outcomes and safety of meropenem-vaborbactam in patients treated for serious gram-negative bacterial infections. Open Forum Infect. Dis. 2020, 7, ofaa051. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; McCreary, E.K.; Nguyen, M.H.; Marini, R.V.; Kline, E.G.; Jones, E.C.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Doi, Y.; et al. Early experience with meropenem-vaborbactam for treatment of carbapenem-resistant enterobacteriaceae infections. Clin. Infect. Dis. 2020, 71, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Doyle, T.B.; Kantro, V.; Mendes, R.E.; Shortridge, D. Meropenem-vaborbactam activity against car-bapenem-resistant enterobacterales isolates collected in U.S. Hospitals during 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e01951-19. [Google Scholar]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of imipenem with relebactam against gram-negative pathogens from New York city. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef] [Green Version]
- Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Hoban, D.J.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of imipenem-relebactam against gram-negative bacilli isolated from patients with lower respiratory tract infections in the United States in 2015–Results from the SMART global surveillance program. Diagn. Microbiol. Infect. Dis. 2017, 88, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Canver, M.C.; Satlin, M.J.; Westblade, L.F.; Kreiswirth, B.N.; Chen, L.; Robertson, A.; Fauntleroy, K.; La Spina, M.; Callan, K.; Jenkins, S.G. Activity of imipenem-relebactam and comparator agents against genetically characterized isolates of carbapenem-resistant enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Kaye, K.S.; Boucher, H.W.; Paschke, A.; Brown, M.L.; Aggrey, A.; Khan, I.; Joeng, H.-K.; Tipping, R.W.; Du, J.; Young, K.; et al. Comparison of treatment outcomes between analysis populations in the restore-imi 1 phase 3 trial of imipenem-cilastatin-relebactam versus colistin plus imipenem-cilastatin in patients with imipenem-nonsusceptible bacterial infections. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Mushtaq, S.; Meunier, D.; Hopkins, K.L.; Hill, R.; Adkin, R.; Chaudhry, A.; Pike, R.; Staves, S.; Woodford, N.; et al. Activity of ceftolozane/tazobactam against surveillance and “problem” Enterobacteriaceae, Pseudomonas Aeruginosa and non-fermenters from the British Isles. J. Antimicrob. Chemother. 2017, 72, 2278–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, S.; Meunier, D.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of imipenem/relebactam against Pseudomonas aeruginosa producing ESBLs and carbapenemases. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Simner, P.J.; Patel, R. Cefiderocol antimicrobial susceptibility testing considerations: The Achilles’ Heel of the Trojan Horse? J. Clin. Microbiol. 2020, 59. [Google Scholar] [CrossRef] [PubMed]
- Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 2013, 1277, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Kazmierczak, K.M.; De Jonge, B.L.M.; Hackel, M.A.; Sahm, D.F.; Bradford, P.A. In vitro activity of aztreonam-avibactam against enterobacteriaceae and pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author (Ref) | Resistant Microorganisms ǂ | Dose New Antibiotic (n Patient) | Comparator, Dose (n Patient) | Definition Outcome | Timing Assessment of Outcomes | Outcomes (New Antibiotics vs. Comparator) |
---|---|---|---|---|---|---|
Plazomicin | ||||||
Wagenlehner [18] | ESBL 26.5% CRE 4.8% | 15 mg/kg IV, QD (n = 306) | Meropenem 1 g IV, TID (n = 303) | Clinical cure and microbiological response | 15 to 19 days after start of therapy | 81.7% vs. 70.1% |
Conolly [19] | Ceftazidime non-susceptible 17.6% | 15 mg/kg IV, QD (n = 51) | Levofloxacin 750 mg IV, QD (n = 29) | Microbiological eradication rate | 12 days after the last dose | 60.8% vs. 58.6% |
Eravacycline | ||||||
Clinical trial identifier NCT03032510 | No information | 1.5 mg/kg IV, QD + levofloxacin PO (n = 603). | Ertapenem 1 g IV, QD + levofloxacin PO (n = 602). | Clinical cure and microbiological response | 14 to 17 days post randomization | 84.8% vs. 94.8% |
Clinical trial identifier NCT01978938 | No information | 1.5 mg/kg IV, QD (n = 455). | Levofloxacin 750 mg IV, QD (n = 453). | Clinical cure and microbiological response | Post-treatment visit | 60.4% vs. 66.9% |
Cefiderocol | ||||||
Portsmouth [21] | No information | 2 g IV, TID (n = 252) | Imipenem-cilastatin 1 g IV, TID (n = 119) | Clinical cure and microbiological response | 7 ± 2 days after end of antibiotic treatment | 73%, vs. 55% |
Ceftazidime/avibactam | ||||||
Carmeli [22] a | Ceftazidime non-susceptible Enterobacterales or P. aeruginosa 100% | 2 g/500 mg IV, TD (n = 165) | Best available therapy (97% carbapenems) (n = 168) | Clinical response | 7 to 10 days after last infusion | 91% vs. 91% |
Wagenlehner [23] | Ceftazidime non-susceptible 19.6% | 2 g/500 mg IV, TD (n = 393) | Doripenem 500 mg IV, TD (n = 417) | Clinical cure and microbiological response | 21 to 25 days post-randomization | 71.2% vs. 64.5% |
Ceftolozane/tazobactam | ||||||
Popejoy [24] | ESBL 11.1% | 1 g/500 mg IV, TD (n = 54) | Levofloxacine 750 mg IV, QD (n = 46) Meropenem 1 g, IV, TD (n = 26) | Clinical cure | 5 to 9 days post therapy | 95.8% vs. 82.6% (p = 0.01) |
Wagenlehner [25] | ESBL 14.8% | 1 g/500 mg IV, TD (n = 398) | Levofloxacine 750 mg IV, QD (n = 402) | Clinical cure and microbiological response | 5 to 9 days post therapy | 76.9% vs. 68.4% |
Meropenem/vaborbactam | ||||||
Kaye [26] | Piperacillin/tazobactam-resistant E. coli and K. pneumoniae 15% | 2 g/2 g IV, TD (n = 274) | Piperacillin/tazobactam 4 g/500 mg IV, TD (n = 276) | Clinical cure and microbiological response | End of intravenous treatment | 98.4% vs. 94.0% |
Wunderink [27] b | Multicenter study (27 CRE 78.7% | 2 g/2 g IV, TD (n = 32) | Best available therapy (n = 15) (46.7% dual therapy) | Cure rates | At day 28 | 65.6% vs. 33.3% (95%CI: 3.3. to 61.3) |
Imipenem+ cilastatin/relebactam | ||||||
Motsch [28] c | Imipenem-nonsusceptible microorganisms 100% | 500 mg/250 mg IV, QD (n = 31) | Colistimethate Sodium + imipenem + cilastatin loading dose 300 mg colistin base activity, followed by maintenance doses up to 150 mg colistin base activity, IV, BD (n = 16) | Clinical and microbiological response Survival (HAP/VAP) Clinical response (cIAI) | On therapy visit (cUTI) At day 28 (HAP/VAP and cIAI) | 71.4% vs.70.0% Favorable overall response against P. aeruginosa: 81% vs. 63% |
First Author (Ref) | Resistant Microorganisms * | Dose New Antibiotic (n Patient) | Comparator, Dose (n Patient) | Definition Outcome | Timing Assessment of Outcomes | Outcomes (New Antibiotics vs. Comparator) |
---|---|---|---|---|---|---|
Eravacycline | ||||||
Solomkin [34] | ESBL 9.3% | 1 mg/kg IV, BD (n = 195, 95.4% underwent surgery). | Meropenem 1 g IV, TD (n = 205, 96.1% underwent surgery). | Clinical cure | 25 to 31 days from start therapy | 90.8% vs. 91.2% In ESBL group: 87.5% vs. 84.6%) |
Solomkin [35] | ESBL 10.9% | 1 mg/kg IV, BD (n = 270, 81.5% underwent surgery) | Ertapenem 1 g IV, QD. (n = 271, 100% received surgery) | Clinical cure | 25 to 31 days from start therapy | 87.0% vs. 88.8% |
Ceftazidime/avibactam | ||||||
Qin [37] | Ceftazidime-nonsusceptible 19.7% | 2 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 214) | Meropenem 1 g IV, TD (n = 217) | Clinical cure | 28 to 35 days post randomisation | 93.8% vs. 94.0% |
Mazuski [38] | Ceftazidime-nonsusceptible 13.5% | 2 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 529) | Meropenem 1 g IV, TD (n = 529) | Clinical cure | 28 to 35 days post randomisation | 81.6% vs. 85.1% |
Ceftolozane/tazobactam | ||||||
Lucasti [39] | 1 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 61) | Meropenem 1 g IV, TD (n = 25) | Clinical cure | 7 to 14 days after last doses | 83.6% vs. 96.0% | |
Popejoy [24] | ESBL 11.1% | 1 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 24) | Meropenem 1 g IV, TD (n = 26) | Clinical cure | 24 to 32 days post therapy | 98.1% vs. 88.5% |
Miller [40] | Carbapenem-nonsusceptible P. aeruginosa 10.1% | 1 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 26) | Meropenem 1 g IV, TD (n = 29) | Clinical cure | 24 to 32 days from start therapy | 100% vs. 93.1% |
Solomkin [41] | ESBL 7.2% | 1 g/500 mg IV, TD + metronidazole 500 mg IV, TD (n = 389) | Meropenem 1 g IV, TD (n = 417) | Clinical cure | 24 to 32 days from start therapy | 83.0% vs. 87.3% ESBL subgroup: 95.8% vs. 88.5% |
First Author (Ref) | Resistant Microorganisms * | Dose New Antibiotic (n Patient) | Comparator, Dose (n Patient) | Definition Outcome | Timing Assessment of Outcomes | Outcomes (New Antibiotics vs. Comparator) |
---|---|---|---|---|---|---|
Plazomicin | ||||||
McKinnell [20] | CRE 100% | 15 mg/kg IV, QD (n = 18 patients) + meropenem or tigecycline | Colistin 5 mg/kg IV, QD (n = 21) + meropenem or tigecycline | Death from any cause or clinically significant disease-related complications occurred in | At 28 day | 24% vs. 50% |
Cefiderocol | ||||||
Wunderink [51] | ESBL 31% CRE 13% | 2 g IV, TID + linezolid 600 mg IV, BD (n = 145) | Meropenem 2 g IV, TID + linezolid 600 mg IV, BD (n = 146) | All-cause mortality | Day 14 | 12.4% vs. 11.6% |
Ceftazidime/avibactam | ||||||
Torres [59] | Ceftazidime non-susceptible 28% | 2 g/500 mg IV, TD + (n = 356) | Meropenem 1 g IV, TD (n = 370) | Clinical cure | 21 to 25 days post randomization | 68.8% vs. 73.0% |
Ceftolozane/tazobactam | ||||||
Kollef [62] | No information | 2 g/1 g IV, TD (n = 362) | Meropenem 1 g IV, TD (n = 364) | All cause mortality | At 28 day | 24.0% vs. 25.3% |
Imipenem-cilastatin/relebactam | ||||||
Titov [63] | No information | 500 mg/250 mg IV, QD (n = 268) | Piperacillin/tazobactam 4 g/500 mg IV, QD (n = 269) | All cause mortality | At 28 day | 15.9% vs. 21.3% |
First Author (Reference) | n | Type of Infections | Resistant Microorganisms | Dose (and of the Comparator, When Avaialable) | Outcomes |
---|---|---|---|---|---|
Eravacycline | |||||
Alosaimy [36] | 35 | cIAI (35%), pneumonia (29%), bone and joint infection (14%), skin and soft tissue infection 9%) | CRE 22.9% | 1 mg/kg IV, BD | 30-day survival: 74%, absence of 30-day recurrence: 91% resolution of signs and symptoms of infection: 57% |
Temocillin | |||||
Balakrishnan [43] | 92 | 46% UTI, 46% BSI, 8% HAP Non-ICU. | ESBL or derepressed AmpC resistance in 58% | 2 g IV, TD | Clinical cure 86%, microbiological cure 84% |
Cefiderocol | |||||
Falcone [52] | 10 | Bacteraemia (60%) or VAP (40%) | Carbapenem-resistant A. baumannii, S. maltophilia or NDM-producing K. pneumoniae | 2 g IV, TID | 30-day clinical success: 70%, 30-day survival: 90% |
Ceftazidime/avibactam | |||||
Caston [69] | 47 | cIAI (38.3%), pneumoniae (29.8%). | Klebsiella pneumoniae KPC | 2 g/500 mg IV, TD | 14-day clinical response: 59.6% - 30-days crude mortality: 23.4% (n = 11) |
Ceftolozane/tazobactam | |||||
Pogue [68] | 100 vs. 100 | VAP (52%), UTI (14%), HAP (13%). | MDR or XDR P. aeruginosa | 2 g/1 g IV, TD (62%), or 1 g/500 mg IV TD (38%) vs. polymyxin or aminoglycosides based therapy | Clinical cure: 81% vs. 61% (OR, 2.7 (95% CI 1.4 to 5.2) |
Gallagher [70] | 205 | HAP/VAP (59%), cIAI, cUTI, SSTI, osteomyelitis (others). | MDR P. aeruginosa (all patients) | 2 g/1 g IV, TD (47.3%), 1 g/500 mg IV TD (others) | Clinical cure: 73.7%, microbiological cure: 70.7% |
Sheffield [71] | 7 | Deep-seated infections, such as infection of left ventricular assist device and ventriculoperitoneal shunt | MDR P. aeruginosa (all patients). | 2 g/1 g IV, TD | All patients had positive outcomes |
Bassetti [72] | 153 | HAP/VAP (30%), cUTI (22.2%), septic shock (27.5%) | ESBL Enterobacterales (all patients). | 1 g/500 mg IV TD + concomitant antibiotics (35.6%) | Favorable clinical outcome 83.2% |
Arakawa [73] | 115 | cUTI (100%) | ESBL 11.3% | 1 g/500 mg IV TD | Favorable clinical outcome 96.6%, and composite favorable outcome (clinical and microbiological) was 80.7% |
Meropenem/vaborbactam | |||||
Ackley [74] | 26 vs. 105 | UTI (35%), IAI (35.5%) | CRE 100%, KPC positive 76.9% | Dose not specified + other antibiotics (15.4%) vs. ceftazidime/avibactam + other antibiotics (61.0%) | Clinical success at 30 days and absence of recurrent infections within 90 days: 69.2% vs. 61.9% |
Alosaimy [75] | 40 | Pneumonia (32.5%), UTI (20%), IAI (12.5%), SSTI (12.5%). | CRE 84.6% | Dose not specified + other antibiotics (37.5%) | Clinical success at 30 days and absence of recurrent infections after last dose: 70% |
Shields [76] | 20 | Bacteremia (40%), VAP (25%). | CRE 100% | 2 g/2 g IV, QD + other antibiotics (20%) | Clinical success at 30 days following the onset of infection: 65% |
ESBL and AmpC | KPC | OXA-48 | MBL | Carbapenem Nonsusceptible A. baumanii | Carbapenem Nonsusceptible P. aeruginosa | |
---|---|---|---|---|---|---|
Plazomicin | ++ | ++ | ++ | +/− a | − | − |
Eravacycline | ++ | ++ | ++ | + b | ++ | − |
Temocillin | ++ (urine breakpoint only) | ++ (urine breakpoint only) | − | − | − | − |
Cefiderocol | ++ | ++ | ++ | ++ | ++ | ++ |
Ceftazidime/avibactam | ++ | ++ | ++ | − | − | +/− |
Ceftolozane/tazobactam | ++ | − | − | − | − | +/− c |
Meropenem/vaborbactam | ++ | ++ | − | − | ? | ? |
Imipenem/relebactam | ++ | ++ | − | − | − | +/− d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J. Clin. Med. 2021, 10, 1068. https://doi.org/10.3390/jcm10051068
Yusuf E, Bax HI, Verkaik NJ, van Westreenen M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. Journal of Clinical Medicine. 2021; 10(5):1068. https://doi.org/10.3390/jcm10051068
Chicago/Turabian StyleYusuf, Erlangga, Hannelore I. Bax, Nelianne J. Verkaik, and Mireille van Westreenen. 2021. "An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria" Journal of Clinical Medicine 10, no. 5: 1068. https://doi.org/10.3390/jcm10051068
APA StyleYusuf, E., Bax, H. I., Verkaik, N. J., & van Westreenen, M. (2021). An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. Journal of Clinical Medicine, 10(5), 1068. https://doi.org/10.3390/jcm10051068