2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department
Abstract
:1. Introduction
2. Search Strategy
3. Main Text
3.1. Antimicrobials
Emergency Physician’s Point of View
3.2. Fluids
3.2.1. Type of Fluids
Crystalloids
Colloids
- Albumin
3.2.2. Amount of Fluids
Emergency Physician’s Point of View
3.3. Vasoactive Agents
Emergency Physician’s Point of View
3.4. Oxygenation and Ventilation Support
3.4.1. Oxygen
3.4.2. Ventilation
3.4.3. High-Flow Nasal Cannula
Emergency Physician’s Point of View
3.5. Other Treatments
3.5.1. Heparin
Emergency Physician’s Point of View
3.5.2. Insulin
Emergency Physician’s Point of View
3.5.3. Proton Pump Inhibitors
Emergency Physician’s Point of View
3.5.4. Renal Replacement Therapy
Emergency Physician’s Point of View
3.5.5. Steroids
Emergency Physician’s Point of View
3.5.6. Sodium Bicarbonate
Emergency Physician’s Point of View
3.5.7. Acetaminophen
Emergency Physician’s Point of View
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Gauer, R.; Forbes, D.; Boyer, N. Sepsis: Diagnosis and Management. Am. Fam. Physician 2020, 101, 409–418. [Google Scholar]
- Chiu, C.; Legrand, M. Epidemiology of sepsis and septic shock. Curr. Opin. Anaesthesiol. 2021, 34, 71–76. [Google Scholar] [CrossRef]
- WHO. Global Report on the Epidemiology and Burden of Sepsis: Current Evidence, Identifying Gaps and Future Directions; World Health Organization: Geneva, Switzerland, 2020.
- Vakkalanka, J.P.; Harland, K.K.; Swanson, M.B.; Mohr, N.M. Clinical and epidemiological variability in severe sepsis: An ecological study. J. Epidemiol. Community Health 2018, 72, 741–745. [Google Scholar] [CrossRef]
- Yealy, D.M.; Mohr, N.M.; Shapiro, N.I.; Venkatesh, A.; Jones, A.E.; Self, W.H. Early care of adults with suspected sepsis in the Emergency Department and Out-of-Hospital Environment: A Consensus-Based Task Force Report. Ann. Emerg. Med. 2021, 78, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Kissoon, N.; Alhawsawi, A.; Aljuaid, M.H.; Daniels, R.; Gorordo-Delsol, L.A.; Machado, F.; Malik, I.; Nsutebu, E.F.; Finfer, S.; et al. World Sepsis Day: A global agenda to target a leading cause of morbidity and mortality. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 319, L518–L522. [Google Scholar] [CrossRef]
- Seymour, C.W.; Rea, T.D.; Kahn, J.M.; Walkey, A.J.; Yealy, D.M.; Angus, D.C. Severe Sepsis in Pre-Hospital Emergency Care. Am. J. Respir. Crit. Care Med. 2012, 186, 1264–1271. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Piechota, M.; Banach, M.; Irzmanski, R.; Barylski, M.; Piechota-Urbanska, M.; Kowalski, J.; Pawlicki, L. Plasma endothelin-1 levels in septic patients. J. Intensive Care Med. 2007, 22, 232–239. [Google Scholar] [CrossRef]
- Ince, C. The microcirculation is the motor of sepsis. Crit. Care 2005, 9 (Suppl. 4), S13–S19. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, H. A proposal linking clearance of circulating lipoproteins to tissue metabolic activity as a basis for understanding atherogenesis. Circ. Res. 1980, 47, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Belousoviene, E.; Kiudulaite, I.; Pilvinis, V.; Pranskunas, A. Links between Endothelial Glycocalyx Changes and Microcirculatory Parameters in Septic Patients. Life 2021, 11, 790. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, R.; Martin-Loeches, I.; Phillips, G.; Osborn, T.M.; Townsend, S.; Dellinger, R.P.; Artigas, A.; Schorr, C.; Levy, M.M. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [Google Scholar] [CrossRef]
- Dugar, S.; Choudhary, C.; Duggal, A. Sepsis and septic shock: Guideline-based management. Clevel. Clin. J. Med. 2020, 87, 53–64. [Google Scholar] [CrossRef]
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M., Jr.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007, 44 (Suppl. 2), S27–S72. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Executive Summary: Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, 409–417. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 457. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 1695. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C.; et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 60, 1448. [Google Scholar]
- Paul, M.; Shani, V.; Muchtar, E.; Kariv, G.; Robenshtok, E.; Leibovici, L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob. Agents Chemother. 2010, 54, 4851–4863. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, W.; Yang, H.; Ma, C.; Sui, S. De-escalation of empiric antibiotics in patients with severe sepsis or septic shock: A meta-analysis. Heart Lung 2016, 45, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Klompas, M.; Calandra, T.; Singer, M. Antibiotics for sepsis-finding the equilibrium. JAMA 2018, 320, 1433–1434. [Google Scholar] [CrossRef]
- Prescott, H.C.; Iwashyna, T.J. Improving sepsis treatment by embracing diagnostic uncertainty. Ann. Am. Thorac. Soc. 2019, 16, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Baggs, J.; Jernigan, J.A.; Halpin, A.L.; Epstein, L.; Hatfield, K.M.; McDonald, L.C. Risk of Subsequent Sepsis Within 90 Days After a Hospital Stay by Type of Antibiotic Exposure. Clin. Infect. Dis. 2018, 66, 1004–1012. [Google Scholar] [CrossRef]
- Branch-Elliman, W.; O’Brien, W.; Strymish, J.; Itani, K.; Wyatt, C.; Gupta, K. Association of Duration and Type of Surgical Prophylaxis with Antimicrobial-Associated Adverse Events. JAMA Surg. 2019, 154, 590–598. [Google Scholar] [CrossRef]
- Hranjec, T.; Rosenberger, L.H.; Swenson, B.; Metzger, R.; Flohr, T.R.; Politano, A.D.; Riccio, L.M.; Popovsky, K.A.; Sawyer, R.G. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: A quasi-experimental, before and after observational cohort study. Lancet Infect. Dis. 2012, 12, 774–780. [Google Scholar] [CrossRef]
- Ong, D.S.Y.; Frencken, J.F.; Klein Klouwenberg, P.M.C.; Juffermans, N.; van der Poll, T.; Bonten, M.J.M.; Cremer, O.L.; MARS consortium. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients with Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin. Infect. Dis. 2017, 64, 1731–1736. [Google Scholar] [CrossRef]
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of Adverse Events with Antibiotic Use in Hospitalized Patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Teshome, B.F.; Vouri, S.M.; Hampton, N.; Kollef, M.H.; Micek, S.T. Duration of Exposure to Antipseudomonal β-Lactam Antibiotics in the Critically Ill and Development of New Resistance. Pharmacotherapy 2019, 39, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Contou, D.; Roux, D.; Jochmans, S.; Coudroy, R.; Guérot, E.; Grimaldi, D.; Ricome, S.; Maury, E.; Plantefève, G.; Mayaux, J.; et al. Septic shock with no diagnosis at 24 hours: A pragmatic multicenter prospective cohort study. Crit. Care 2016, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Kadri, S.S.; Danner, R.L.; Suffredini, A.F.; Massaro, A.F.; Kitch, B.T.; Lee, G.; Klompas, M. Diagnosing sepsis is subjective and highly variable: A survey of intensivists using case vignettes. Crit. Care 2016, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.X.; Fielding-Singh, V.; Greene, J.D.; Baker, J.M.; Iwashyna, T.J.; Bhattacharya, J.; Escobar, G.J. The Timing of Early Antibiotics and Hospital Mortality in Sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Peltan, I.D.; Brown, S.M.; Bledsoe, J.R.; Sorensen, J.; Samore, M.H.; Allen, T.L.; Hough, C.L. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis. Chest 2019, 155, 938–946. [Google Scholar] [CrossRef]
- Abe, T.; Kushimoto, S.; Tokuda, Y.; Phillips, G.S.; Rhodes, A.; Sugiyama, T.; Komori, A.; Iriyama, H.; Ogura, H.; Fujishima, S.; et al. Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: A descriptive analysis of a prospective observational study. Crit. Care 2019, 23, 360. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Mikkelsen, M.E.; Band, R.A.; Pines, J.M.; Massone, R.; Furia, F.F.; Shofer, F.S.; Goyal, M. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit. Care Med. 2010, 38, 1045–1053. [Google Scholar] [CrossRef]
- Ko, B.S.; Choi, S.H.; Kang, G.H.; Shin, T.G.; Kim, K.; Jo, Y.H.; Ryoo, S.M.; Kim, Y.J.; Park, Y.S.; Kwon, W.Y.; et al. Time to Antibiotics and the Outcome of Patients with Septic Shock: A Propensity Score Analysis. Am. J. Med. 2020, 133, 485–491.e4. [Google Scholar] [CrossRef]
- Puskarich, M.A.; Trzeciak, S.; Shapiro, N.I.; Arnold, R.C.; Horton, J.M.; Studnek, J.R.; Kline, J.A.; Jones, A.E.; Emergency Medicine Shock Research Network (EMSHOCKNET). Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit. Care Med. 2011, 39, 2066–2071. [Google Scholar] [CrossRef]
- Rothrock, S.G.; Cassidy, D.D.; Barneck, M.; Schinkel, M.; Guetschow, B.; Myburgh, C.; Nguyen, L.; Earwood, R.; Nanayakkara, P.W.B.; Nannan Panday, R.S.; et al. Outcome of Immediate Versus Early Antibiotics in Severe Sepsis and Septic Shock: A Systematic Review and Meta-analysis. Ann. Emerg. Med. 2020, 76, 427–441. [Google Scholar] [CrossRef]
- Ryoo, S.M.; Kim, W.Y.; Sohn, C.H.; Seo, D.W.; Koh, J.W.; Oh, B.J.; Lim, K.S. Prognostic value of timing of antibiotic administration in patients with septic shock treated with early quantitative resuscitation. Am. J. Med. Sci. 2015, 349, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, J.; Rhee, C.; Klompas, M. A Critical Analysis of the Literature on Time-to-Antibiotics in Suspected Sepsis. J. Infect. Dis. 2020, 222 (Suppl. 2), S110–S118. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Oskam, E.; Stassen, P.M.; Exter, P.V.; van de Ven, P.M.; Haak, H.R.; Holleman, F.; Zanten, A.V.; Leeuwen-Nguyen, H.V.; Bon, V.; et al. Prehospital antibiotics in the ambulance for sepsis: A multicentre, open label, randomised trial. Lancet Respir. Med. 2018, 6, 40–50. [Google Scholar] [CrossRef]
- Bloos, F.; Rüddel, H.; Thomas-Rüddel, D.; Schwarzkopf, D.; Pausch, C.; Harbarth, S.; Schreiber, T.; Gründling, M.; Marshall, J.; Simon, P.; et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: A cluster randomized trial. Intensive Care Med. 2017, 43, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.T.; Sun, L.C.; Jia, H.B.; Gao, W.; Yang, J.P.; Zhang, G.Q. Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. Am. J. Emerg. Med. 2017, 35, 579–583. [Google Scholar] [CrossRef]
- Uzzan, B.; Cohen, R.; Nicolas, P.; Cucherat, M.; Perret, G.Y. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: A systematic review and meta-analysis. Crit. Care Med. 2006, 34, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Jaccard-Stolz, D.; Bingisser, R.; Gencay, M.M.; Huber, P.R.; Tamm, M.; Müller, B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: Cluster-randomised, single-blinded intervention trial. Lancet 2004, 363, 600–607. [Google Scholar] [CrossRef]
- Peng, F.; Chang, W.; Xie, J.F.; Sun, Q.; Qiu, H.B.; Yang, Y. Ineffectiveness of procalcitonin-guided antibiotic therapy in severely critically ill patients: A meta-analysis. Int. J. Infect. Dis. 2019, 85, 158–166. [Google Scholar] [CrossRef]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 426–435. [Google Scholar] [CrossRef]
- Jensen, J.U.; Hein, L.; Lundgren, B.; Bestle, M.H.; Mohr, T.T.; Andersen, M.H.; Thornberg, K.J.; Løken, J.; Steensen, M.; Fox, Z.; et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: A randomized trial. Crit. Care Med. 2011, 39, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Layios, N.; Lambermont, B.; Canivet, J.L.; Morimont, P.; Preiser, J.C.; Garweg, C.; Ledoux, D.; Frippiat, F.; Piret, S.; Giot, J.B.; et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Crit. Care Med. 2012, 40, 2304–2309. [Google Scholar] [CrossRef]
- Najafi, A.; Khodadadian, A.; Sanatkar, M.; Shariat Moharari, R.; Etezadi, F.; Ahmadi, A.; Imani, F.; Khajavi, M.R. The Comparison of Procalcitonin Guidance Administer Antibiotics with Empiric Antibiotic Therapy in Critically Ill Patients Admitted in Intensive Care Unit. Acta Med. Iran. 2015, 53, 562–567. [Google Scholar]
- Shozushima, T.; Takahashi, G.; Matsumoto, N.; Kojika, M.; Okamura, Y.; Endo, S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J. Infect. Chemother. 2011, 17, 764–769. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Karanikolas, E.; Pierrakos, C.; Koniari, I.; Karanikolas, M. Presepsin as a Diagnostic and Prognostic Biomarker in Sepsis. Cureus 2021, 13, e15019. [Google Scholar] [CrossRef]
- Di Pasquale, M.F.; Sotgiu, G.; Gramegna, A.; Radovanovic, D.; Terraneo, S.; Reyes, L.F.; Rupp, J.; González Del Castillo, J.; Blasi, F.; Aliberti, S.; et al. Prevalence and Etiology of Community-acquired Pneumonia in Immunocompromised Patients. Clin. Infect. Dis. 2019, 68, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Kabak, E.; Hudcova, J.; Magyarics, Z.; Stulik, L.; Goggin, M.; Szijártó, V.; Nagy, E.; Stevens, C. The utility of endotracheal aspirate bacteriology in identifying mechanically ventilated patients at risk for ventilator associated pneumonia: A single-center prospective observational study. BMC Infect. Dis. 2019, 19, 756. [Google Scholar] [CrossRef] [PubMed]
- Ternes, B.; Wagenlehner, F.M.E. Guideline-based treatment of urinary tract infections. Urologe A 2020, 59, 550–558. [Google Scholar] [CrossRef]
- Tseng, W.P.; Chen, Y.C.; Yang, B.J.; Chen, S.Y.; Lin, J.J.; Huang, Y.H.; Fu, C.M.; Chang, S.C.; Chen, S.Y. Predicting Multidrug-Resistant Gram-Negative Bacterial Colonization and Associated Infection on Hospital Admission. Infect. Control Hosp. Epidemiol. 2017, 38, 1216–1225. [Google Scholar] [CrossRef]
- Augustine, M.R.; Testerman, T.L.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Clinical Risk Score for Prediction of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Bloodstream Isolates. Infect. Control Hosp. Epidemiol. 2017, 38, 266–272. [Google Scholar] [CrossRef]
- Wall, E.C.; Chan, J.M.; Gil, E.; Heyderman, R.S. Acute bacterial meningitis. Curr. Opin. Neurol. 2021, 34, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Bystritsky, R.J. Cellulitis. Infect. Dis. Clin. N. Am. 2021, 35, 49–60. [Google Scholar] [CrossRef]
- Peetermans, M.; de Prost, N.; Eckmann, C.; Norrby-Teglund, A.; Skrede, S.; De Waele, J.J. Necrotizing skin and soft-tissue infections in the intensive care unit. Clin. Microbiol. Infect. 2020, 26, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.; de Assis, V.; Halscott, T. Top 10 Pearls for the Recognition, Evaluation, and Management of Maternal Sepsis. Obstet. Gynecol. 2021, 138, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Niederman, M.S.; Baron, R.M.; Bouadma, L.; Calandra, T.; Daneman, N.; DeWaele, J.; Kollef, M.H.; Lipman, J.; Nair, G.B. Initial antimicrobial management of sepsis. Crit. Care 2021, 25, 307. [Google Scholar] [CrossRef]
- Lamoth, F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect. Drug Resist. 2023, 16, 1087–1097. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Yahav, D.; Paul, M.; Leibovici, L. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection—7 days or less versus longer treatment: Systematic review and meta-analysis of randomized controlled trials. J Antimicrob. Chemother. 2013, 68, 2183–2191. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’Neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N. Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef]
- Pugh, R.; Grant, C.; Cooke, R.P.; Dempsey, G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 2015, CD007577. [Google Scholar] [CrossRef]
- Havey, T.C.; Fowler, R.A.; Daneman, N. Duration of antibiotic therapy for bacteremia: A systematic review and meta-analysis. Crit. Care 2011, 15, R267. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Matthaiou, D.K.; Karageorgopoulos, D.E.; Grammatikos, A.P.; Athanassa, Z.; Falagas, M.E. Short- versus long-course antibacterial therapy for community-acquired pneumonia: A meta-analysis. Drugs 2008, 68, 1841–1854. [Google Scholar] [CrossRef]
- Tansarli, G.S.; Andreatos, N.; Pliakos, E.E.; Mylonakis, E. A Systematic Review and Meta-analysis of Antibiotic Treatment Duration for Bacteremia Due to Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02495-18. [Google Scholar] [CrossRef]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farèse, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomized clinical trial. Intensive Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef]
- Annane, D.; Maxime, V.; Faller, J.P.; Mezher, C.; Clec’h, C.; Martel, P.; Gonzales, H.; Feissel, M.; Cohen, Y.; Capellier, G.; et al. Procalcitonin levels to guide antibiotic therapy in adults with non-microbiologically proven apparent severe sepsis: A randomised controlled trial. BMJ Open 2013, 3, e002186. [Google Scholar] [CrossRef]
- Bloos, F.; Trips, E.; Nierhaus, A.; Briegel, J.; Heyland, D.K.; Jaschinski, U.; Moerer, O.; Weyland, A.; Marx, G.; Gründling, M.; et al. Effect of Sodium Selenite Administration and Procalcitonin-Guided Therapy on Mortality in Patients with Severe Sepsis or Septic Shock: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Deliberato, R.O.; Marra, A.R.; Sanches, P.R.; Martino, M.D.; Ferreira, C.E.; Pasternak, J.; Paes, A.T.; Pinto, L.M.; dos Santos, O.F.; Edmond, M.B. Clinical and economic impact of procalcitonin to shorten antimicrobial therapy in septic patients with proven bacterial infection in an intensive care setting. Diagn. Microbiol. Infect. Dis. 2013, 76, 266–271. [Google Scholar] [CrossRef]
- Hochreiter, M.; Köhler, T.; Schweiger, A.M.; Keck, F.S.; Bein, B.; von Spiegel, T.; Schroeder, S. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: A randomized prospective controlled trial. Crit. Care 2009, 13, R83. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, H.F.; Lei, Y.; Zhao, S.X.; Sun, M.L. Clinical significance of dynamic monitoring of procalcitonin in guiding the use of antibiotics in patients with sepsis in ICU. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2013, 25, 690–693. [Google Scholar]
- Nobre, V.; Harbarth, S.; Graf, J.D.; Rohner, P.; Pugin, J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: A randomized trial. Am. J. Respir. Crit. Care Med. 2008, 177, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.F.; Botoni, F.A.; Oliveira, C.R.; Silva, C.B.; Pereira, H.A.; Serufo, J.C.; Nobre, V. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: A randomized trial. Crit. Care Med. 2013, 41, 2336–2343. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Ji, Y.; Ling, Y.; Ye, C.Y.; Yang, S.M.; Liu, Y.Y.; Yang, R.Y.; Luo, Y.F.; Guo, Z. Procalcitonin is a good tool to guide duration of antibiotic therapy in patients with severe acute pancreatitis. A randomized prospective single-center controlled trial. Saudi Med. J. 2012, 33, 382–387. [Google Scholar] [PubMed]
- Schroeder, S.; Hochreiter, M.; Koehler, T.; Schweiger, A.M.; Bein, B.; Keck, F.S.; von Spiegel, T. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: Results of a prospective randomized study. Langenbecks Arch. Surg. 2009, 394, 221–226. [Google Scholar] [CrossRef]
- Shehabi, Y.; Sterba, M.; Garrett, P.M.; Rachakonda, K.S.; Stephens, D.; Harrigan, P.; Walker, A.; Bailey, M.J.; Johnson, B.; Millis, D.; et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2014, 190, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Stolz, D.; Smyrnios, N.; Eggimann, P.; Pargger, H.; Thakkar, N.; Siegemund, M.; Marsch, S.; Azzola, A.; Rakic, J.; Mueller, B.; et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: A randomised study. Eur. Respir. J. 2009, 34, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Yan, F.D.; Yu, J.Q.; Chen, Q.H.; Lin, H.; Zheng, R.Q. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment of sepsis patients. Zhonghua Yi Xue Za Zhi 2017, 97, 343–346. [Google Scholar]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef]
- Edwards, J.D. Management of septic shock. BMJ 1993, 306, 1661–1664. [Google Scholar] [CrossRef]
- Tuchschmidt, J.; Fried, J.; Astiz, M.; Rackow, E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 1992, 102, 216–220. [Google Scholar] [CrossRef]
- Dyson, A.; Cone, S.; Singer, M.; Ackland, G.L. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br. J. Anaesth. 2012, 108, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.E.; Woodcock, T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012, 108, 384–394. [Google Scholar] [CrossRef]
- Alphonsus, C.S.; Rodseth, R.N. The endothelial glycocalyx: A review of the vascular barrier. Anaesthesia 2014, 69, 777–784. [Google Scholar] [CrossRef]
- Chappell, D.; Bruegger, D.; Potzel, J.; Jacob, M.; Brettner, F.; Vogeser, M.; Conzen, P.; Becker, B.F.; Rehm, M. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit. Care 2014, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; Wang, L.; Coston, T.D.; Krishnan, N.I.; Casey, J.D.; Wanderer, J.P.; Ehrenfeld, J.M.; Byrne, D.W.; Stollings, J.L.; Siew, E.D.; et al. Balanced Crystalloids versus Saline in Sepsis. A Secondary Analysis of the SMART Clinical Trial. Am. J. Respir. Crit. Care Med. 2019, 200, 1487–1495. [Google Scholar] [CrossRef]
- Corl, K.A.; Prodromou, M.; Merchant, R.C.; Gareen, I.; Marks, S.; Banerjee, D.; Amass, T.; Abbasi, A.; Delcompare, C.; Palmisciano, A.; et al. The Restrictive IV Fluid Trial in Severe Sepsis and Septic Shock (RIFTS): A Randomized Pilot Study. Crit. Care Med. 2019, 47, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Starling, E.H. On the absorption of fluids from the connective tissue spaces. J. Physiol. 1896, 31, 326. [Google Scholar] [CrossRef] [PubMed]
- Myburgh, J.A.; Mythen, M.G. Resuscitation fluids. N. Engl. J. Med. 2013, 369, 1243–1251. [Google Scholar] [CrossRef]
- Tseng, C.H.; Chen, T.T.; Wu, M.Y.; Chan, M.C.; Shih, M.C.; Tu, Y.K. Resuscitation fluid types in sepsis, surgical, and trauma patients: A systematic review and sequential network meta-analyses. Crit. Care 2020, 24, 693. [Google Scholar] [CrossRef]
- Annane, D.; Siami, S.; Jaber, S.; Martin, C.; Elatrous, S.; Declère, A.D.; Preiser, J.C.; Outin, H.; Troche, G.; Charpentier, C.; et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: The CRISTAL randomized trial. JAMA 2013, 310, 1809–1817. [Google Scholar] [CrossRef]
- Mutter, T.C.; Ruth, C.A.; Dart, A.B. Hydroxyethyl starch (HES) versus other fluid therapies: Effects on kidney function. Cochrane Database Syst. Rev. 2013, CD007594. [Google Scholar] [CrossRef] [PubMed]
- Mårtensson, J.; Bellomo, R. Are all fluids bad for the kidney? Curr. Opin. Crit. Care 2015, 21, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.D.; Brown, R.M.; Semler, M.W. Resuscitation fluids. Curr. Opin. Crit. Care 2018, 24, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Mayerhöfer, T.; Wiedermann, C.J.; Joannidis, M. Use of albumin: State of the art. Med. Klin. Intensivmed. Notf. 2021, 116, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Caironi, P.; Tognoni, G.; Gattinoni, L. Albumin replacement in severe sepsis or septic shock. N. Engl. J. Med. 2014, 371, 84. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.L.; de Almeida, J.P.; de Oliveira, G.Q.; Rizk, S.I.; Fukushima, J.T.; Nakamura, R.E.; Mourão, M.M.; Galas, F.R.B.G.; Abdala, E.; Pinheiro Freire, M.; et al. Lactated Ringer’s Versus 4% Albumin on Lactated Ringer’s in Early Sepsis Therapy in Cancer Patients: A Pilot Single-Center Randomized Trial. Crit. Care Med. 2019, 47, e798–e805. [Google Scholar] [CrossRef]
- Kakaei, F.H.S.; Asheghvatan, A.; Zarrintan, S.; Asvadi, T.; Beheshtirouy, S.; Mohajer, A. Albumin as a resuscitative fluid in patients with severe sepsis: A randomized clinical trial. Adv. Biosci. Clin. Med. 2017, 5, 9–16. [Google Scholar] [CrossRef]
- Lewis, S.R.; Pritchard, M.W.; Evans, D.J.; Butler, A.R.; Alderson, P.; Smith, A.F.; Roberts, I. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst. Rev. 2018, 8, CD000567. [Google Scholar] [CrossRef]
- Martin, G.S.; Bassett, P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. J. Crit. Care 2019, 50, 144–154. [Google Scholar] [CrossRef]
- Marik, P.E.; Byrne, L.; van Haren, F. Fluid resuscitation in sepsis: The great 30 mL per kg hoax. J. Thorac. Dis. 2020, 12, S37–S47. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Herritt, B.; Lewis, K.; Diaz-Gomez, J.L.; Fox-Robichaud, A.; Ball, I.; Granton, J.; Rochwerg, B. Dosing Fluids in Early Septic Shock. Chest 2021, 159, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Lat, I.; Coopersmith, C.M.; De Backer, D.; Coopersmith, C.M.; Research Committee of the Surviving Sepsis Campaign. The surviving sepsis campaign: Fluid resuscitation and vasopressor therapy research priorities in adult patients. Intensive Care Med. Exp. 2021, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Gavelli, F.; Castello, L.M.; Avanzi, G.C. Management of sepsis and septic shock in the emergency department. Intern. Emerg. Med. 2021, 16, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Ladzinski, A.T.; Thind, G.S.; Siuba, M.T. Rational Fluid Resuscitation in Sepsis for the Hospitalist: A Narrative Review. Mayo Clin. Proc. 2021, 96, 2464–2473. [Google Scholar] [CrossRef] [PubMed]
- Trzeciak, S.; Cinel, I.; Phillip Dellinger, R.; Shapiro, N.I.; Arnold, R.C.; Parrillo, J.E.; Hollenberg, S.M.; Microcirculatory Alterations in Resuscitation and Shock (MARS) Investigators. Resuscitating the microcirculation in sepsis: The central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad. Emerg. Med. 2008, 15, 399–413. [Google Scholar] [CrossRef]
- Bakker, J.; Kattan, E.; Annane, D.; Castro, R.; Cecconi, M.; De Backer, D.; Dubin, A.; Evans, L.; Gong, M.N.; Hamzaoui, O.; et al. Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med. 2022, 48, 148–163. [Google Scholar] [CrossRef]
- Kattan, E.; Castro, R.; Miralles-Aguiar, F.; Hernández, G.; Rola, P. The emerging concept of fluid tolerance: A position paper. J Crit. Care 2022, 71, 154070. [Google Scholar] [CrossRef]
- Monnet, X.; Marik, P.E.; Teboul, J.L. Prediction of fluid responsiveness: An update. Ann. Intensive Care 2016, 6, 111. [Google Scholar] [CrossRef]
- Monnet, X.; Teboul, J.-L. My patient has received fluid. How to assess its efficacy and side effects? Ann. Intensive Care 2018, 8, 54. [Google Scholar] [CrossRef]
- Bentzer, P.; Griesdale, D.E.; Boyd, J.; MacLean, K.; Sirounis, D.; Ayas, N.T. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA J. Am. Med. Assoc. 2016, 316, 1298–1309. [Google Scholar] [CrossRef]
- Messmer, A.S.; Zingg, C.; Müller, M.; Gerber, J.L.; Schefold, J.C.; Pfortmueller, C.A. Fluid Overload and Mortality in Adult Critical Care Patients-A Systematic Review and Meta-Analysis of Observational Studies. Crit. Care Med. 2020, 48, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, M.; Gong, S.; Cui, N.; Xu, L. Increased 28-day mortality due to fluid overload prior to continuous renal replacement in sepsis associated acute kidney injury. Ther. Apher. Dial. 2022, 26, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Kattan, E.; Ospina-Tascón, G.A.; Teboul, J.L.; Castro, R.; Cecconi, M.; Ferri, G.; Bakker, J.; Hernández, G.; ANDROMEDA-SHOCK Investigators. Systematic assessment of fluid responsiveness during early septic shock resuscitation: Secondary analysis of the ANDROMEDA-SHOCK trial. Crit. Care 2020, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Shi, R.; Teboul, J.L. Prediction of fluid responsiveness. What’s new? Ann. Intensive Care 2022, 12, 46. [Google Scholar] [CrossRef]
- Perner, A.; Cecconi, M.; Cronhjort, M.; Darmon, M.; Jakob, S.M.; Pettilä, V.; van der Horst, I.C.C. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med. 2018, 44, 791–798. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network; Shapiro, N.I.; Douglas, I.S.; Brower, R.G.; Brown, S.M.; Exline, M.C.; Ginde, A.A.; Gong, M.N.; Grissom, C.K.; Hayden, D.; et al. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. N. Engl. J. Med. 2023, 388, 499–510. [Google Scholar]
- Vincent, J.L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef]
- Lamontagne, F.; Meade, M.O.; Hébert, P.C.; Asfar, P.; Lauzier, F.; Seely, A.J.E.; Day, A.G.; Mehta, S.; Muscedere, J.; Bagshaw, S.M.; et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: A multicentre pilot randomized controlled trial. Intensive Care Med. 2016, 42, 542–550. [Google Scholar] [CrossRef]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients with Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
- Hernández, G.; Teboul, J.L.; Bakker, J. Norepinephrine in septic shock. Intensive Care Med. 2019, 45, 687–689. [Google Scholar] [CrossRef]
- Shi, R.; Hamzaoui, O.; De Vita, N.; Monnet, X.; Teboul, J.L. Vasopressors in septic shock: Which, when, and how much? Ann. Transl. Med. 2020, 8, 794. [Google Scholar] [CrossRef] [PubMed]
- Permpikul, C.; Tongyoo, S.; Viarasilpa, T.; Trainarongsakul, T.; Chakorn, T.; Udompanturak, S. Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER). A Randomized Trial. Am J Respir Crit. Care Med. 2019, 199, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.A.; Ammar, A.A.; Wieruszewski, P.M.; Bissell, B.D.; TLong, M.; Albert, L.; Khanna, A.K.; Sacha, G.L. Timing of vasoactive agents and corticosteroid initiation in septic shock. Ann. Intensive Care 2022, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, M.S.; Alatigue, R. Association Between Early Administration of Norepinephrine in Septic Shock and Survival. Open Access Emerg. Med. 2021, 13, 143–150. [Google Scholar] [CrossRef]
- Persichini, R.; Silva, S.; Teboul, J.L.; Jozwiak, M.; Chemla, D.; Richard, C.; Monnet, X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit. Care Med. 2012, 40, 3146–3153. [Google Scholar] [CrossRef]
- Varpula, M.; Tallgren, M.; Saukkonen, K.; Voipio-Pulkki, L.M.; Pettilä, V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005, 31, 1066–1071. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhang, D. Timing of norepinephrine initiation in patients with septic shock: A systematic review and meta-analysis. Crit. Care 2020, 24, 488. [Google Scholar] [CrossRef]
- Jouffroy, R.; Hajjar, A.; Gilbert, B.; Tourtier, J.P.; Bloch-Laine, E.; Ecollan, P.; Boularan, J.; Bounes, V.; Vivien, B.; Gueye, P.N. Prehospital norepinephrine administration reduces 30-day mortality among septic shock patients. BMC Infect. Dis. 2022, 22, 345. [Google Scholar] [CrossRef]
- Xu, F.; Zhong, R.; Shi, S.; Zeng, Y.; Tang, Z. Early initiation of norepinephrine in patients with septic shock: A propensity score-based analysis. Am. J. Emerg. Med. 2022, 54, 287–296. [Google Scholar] [CrossRef]
- Hamzaoui, O.; Jozwiak, M.; Geffriaud, T.; Sztrymf, B.; Prat, D.; Jacobs, F.; Monnet, X.; Trouiller, P.; Richard, C.; Teboul, J.L. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br. J. Anaesth. 2018, 120, 517–524. [Google Scholar] [CrossRef]
- Boyd, J.H.; Forbes, J.; Nakada, T.A.; Walley, K.R.; Russell, J.A. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011, 39, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.R.; Payen, D.; et al. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, C.; Shen, Q.; Xu, H.; Fang, Y.; Mao, W. The effect of early vasopressin use on patients with septic shock: A systematic review and meta-analysis. Am. J. Emerg. Med. 2021, 48, 203–208. [Google Scholar] [CrossRef]
- Sedhai, Y.R.; Shrestha, D.B.; Budhathoki, P.; Memon, W.; Acharya, R.; Gaire, S.; Pokharel, N.; Maharjan, S.; Jasaraj, R.; Sodhi, A.; et al. Vasopressin versus norepinephrine as the first-line vasopressor in septic shock: A systematic review and meta-analysis. J. Clin. Transl. Res. 2022, 8, 185–199. [Google Scholar]
- Jentzer, J.C.; Hollenberg, S.M. Vasopressor and Inotrope Therapy in Cardiac Critical Care. J. Intensive Care Med. 2021, 36, 843–856. [Google Scholar] [CrossRef]
- Belletti, A.; Nagy, A.; Sartorelli, M.; Mucchetti, M.; Putzu, A.; Sartini, C.; Morselli, F.; De Domenico, P.; Zangrillo, A.; Landoni, G.; et al. Effect of Continuous Epinephrine Infusion on Survival in Critically Ill Patients: A Meta-Analysis of Randomized Trials. Crit. Care Med. 2020, 48, 398–405. [Google Scholar] [CrossRef]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock—Basics of diagnosis, pathophysiology and clinical decision making. Med. Clin. N. Am. 2020, 104, 573–585. [Google Scholar] [CrossRef]
- Cioccari, L.; Jakob, S.M.; Takala, J. Should Vasopressors Be Started Early in Septic Shock? Semin. Respir. Crit. Care Med. 2021, 42, 683–688. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Hernandez, G.; Alvarez, I.; Calderón-Tapia, L.E.; Manzano-Nunez, R.; Sánchez-Ortiz, A.I.; Quiñones, E.; Ruiz-Yucuma, J.E.; Aldana, J.L.; Teboul, J.L.; et al. Effects of very early start of norepinephrine in patients with septic shock: A propensity score-based analysis. Crit. Care 2020, 24, 52. [Google Scholar] [CrossRef]
- Chalfin, D.B. Vasopressor Therapy Early, or Vasopressors Later? Still an Important Question in Septic Shock. Crit. Care Med. 2022, 50, 717–718. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.J.; Lee, Y.S.; Kim, T.H.; Jang, J.H.; Lee, H.B.; Oh, D.K.; Park, M.H.; Lim, C.M.; Cho, W.H.; Korean Sepsis Alliance (KSA) Investigators. Vasopressor Initiation Within 1 Hour of Fluid Loading Is Associated with Increased Mortality in Septic Shock Patients: Analysis of National Registry Data. Crit. Care Med. 2022, 50, e351–e360. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, B.R.; Howard, L.S.; Earis, J.; Mak, V. British Thoracic Society Guideline for oxygen use in adults in healthcare and emergency settings. BMJ Open Respir. Res. 2017, 4, e000170. [Google Scholar] [CrossRef] [PubMed]
- Stolmeijer, R.; Bouma, H.R.; Zijlstra, J.G.; Drost-de Klerck, A.M.; Ter Maaten, J.C.; Ligtenberg, J.J.M. A Systematic Review of the Effects of Hyperoxia in Acutely Ill Patients: Should We Aim for Less? Biomed. Res. Int. 2018, 2018, 7841295. [Google Scholar] [CrossRef]
- Barbateskovic, M.; Schjørring, O.L.; Krauss, S.R.; Meyhoff, C.S.; Jakobsen, J.C.; Rasmussen, B.S.; Perner, A.; Wetterslev, J. Higher vs Lower Oxygenation Strategies in Acutely Ill Adults: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Chest 2021, 159, 154–173. [Google Scholar] [CrossRef]
- De Monnin, K.; Terian, E.; Yaegar, L.H.; Pappal, R.D.; Mohr, N.M.; Roberts, B.W.; Kollef, M.H.; Palmer, C.M.; Ablordeppey, E.; Fuller, B.M. Low Tidal Volume Ventilation for Emergency Department Patients: A Systematic Review and Meta-Analysis on Practice Patterns and Clinical Impact. Crit. Care Med. 2022, 50, 986–998. [Google Scholar] [CrossRef]
- Gottlieb, M.; Chesis, M.; Long, B. What is the Impact of Low Tidal Volume Ventilation for Emergency Department Patients? Ann. Emerg. Med. 2022, 81, 162–164. [Google Scholar] [CrossRef]
- MacIntyre, N.R. Physiologic Effects of Noninvasive Ventilation. Respir. Care 2019, 64, 617–628. [Google Scholar] [CrossRef]
- Frat, J.P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef]
- Mauri, T.; Turrini, C.; Eronia, N.; Grasselli, G.; Volta, C.A.; Bellani, G.; Pesenti, A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017, 195, 1207–1215. [Google Scholar] [CrossRef]
- Xuan, L.; Ma, J.; Tao, J.; Zhu, L.; Lin, S.; Chen, S.; Pan, S.; Zhu, D.; Yi, L.; Zheng, Y. Comparative study of high flow nasal catheter device and noninvasive positive pressure ventilation for sequential treatment in sepsis patients after weaning from mechanical ventilation in intensive care unit. Ann. Palliat. Med. 2021, 10, 6270–6278. [Google Scholar] [CrossRef] [PubMed]
- Tongyoo, S.; Tantibundit, P.; Daorattanachai, K.; Viarasilpa, T.; Permpikul, C.; Udompanturak, S. High-flow nasal oxygen cannula vs. noninvasive mechanical ventilation to prevent reintubation in sepsis: A randomized controlled trial. Ann. Intensive Care 2021, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jeon, K.; Oh, D.K.; Cho, Y.J.; Hong, S.B.; Lee, Y.J.; Lee, S.M.; Suh, G.Y.; Park, M.H.; Lim, C.M.; et al. Failure of High-Flow Nasal Cannula Therapy in Pneumonia and Non-Pneumonia Sepsis Patients: A Prospective Cohort Study. J. Clin. Med. 2021, 10, 3587. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levi, M.; Levy, J.H. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin. Thromb. Hemost. 2020, 46, 89–95. [Google Scholar] [PubMed]
- Iba, T.; Levy, J.H.; Warkentin, T.E.; Thachil, J.; van der Poll, T.; Levi, M.; Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J. Thromb. Haemost. 2019, 17, 1989–1994. [Google Scholar] [CrossRef]
- Li, X.; Ma, X. The role of heparin in sepsis: Much more than just an anticoagulant. Br. J. Haematol. 2017, 179, 389–398. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. The Role of Histones and Heparin in Sepsis: A Review. J. Intensive Care Med. 2022, 37, 319–326. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, H.; Ma, X. Heparin for treatment of sepsis: A systemic review. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2014, 26, 135–141. [Google Scholar]
- Yini, S.; Heng, Z.; Xin, A.; Xiaochun, M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol. Scand. 2015, 59, 160–169. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Al-Hameed, F.; Burns, K.E.A.; Mehta, S.; Alsolamy, S.J.; Alshahrani, M.S.; Mandourah, Y.; Almekhlafi, G.A.; Almaani, M.; Al Bshabshe, A.; et al. Adjunctive Intermittent Pneumatic Compression for Venous Thromboprophylaxis. N. Engl. J. Med. 2019, 380, 1305–1315. [Google Scholar] [CrossRef]
- Aleman, L.; Guerrero, J. Hiperglicemia por sepsis: Del mecanismo a la clínica [Sepsis hyperglycemia in the ICU: From the mechanism to the clinic]. Rev. Med. Chil. 2018, 146, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.M.; Nugent, K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am. J. Med. Sci. 2021, 361, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Zohar, Y.; Zilberman Itskovich, S.; Koren, S.; Zaidenstein, R.; Marchaim, D.; Koren, R. The association of diabetes and hyperglycemia with sepsis outcomes: A population-based cohort analysis. Intern. Emerg. Med. 2021, 16, 719–728. [Google Scholar] [CrossRef] [PubMed]
- See, K.C. Glycemic targets in critically ill adults: A mini-review. World J. Diabetes 2021, 12, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Jeger, R.V.; Seeberger, M.D.; Keller, U.; Pfisterer, M.E.; Filipovic, M. Oral hypoglycemics: Increased postoperative mortality in coronary risk patients. Cardiology 2007, 107, 296–301. [Google Scholar] [CrossRef]
- Rim, J.; Gallini, J.; Jasien, C.; Cui, X.; Phillips, L.; Trammell, A.; Sadikot, R.T. Use of oral anti-diabetic drugs and risk of hospital and intensive care unit admissions for infections. Am. J. Med. Sci. 2022, 364, 53–58. [Google Scholar] [CrossRef]
- Fujishima, S.; Gando, S.; Saitoh, D.; Kushimoto, S.; Ogura, H.; Abe, T.; Shiraishi, A.; Mayumi, T.; Sasaki, J.; Kotani, J.; et al. Incidence and Impact of Dysglycemia in Patients with Sepsis Under Moderate Glycemic Control. Shock 2021, 56, 507–513. [Google Scholar] [CrossRef]
- Granholm, A.; Zeng, L.; Dionne, J.C.; Perner, A.; Marker, S.; Krag, M.; MacLaren, R.; Ye, Z.; Møller, M.H.; Alhazzani, W.; et al. Predictors of gastrointestinal bleeding in adult ICU patients: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 1347–1359. [Google Scholar] [CrossRef]
- Krag, M.; Perner, A.; Møller, M.H. Stress ulcer prophylaxis in the intensive care unit. Curr Opin Crit. Care 2016, 22, 186–190. [Google Scholar] [CrossRef]
- Huang, M.; Han, M.; Han, W.; Kuang, L. Proton pump inhibitors versus histamine-2 receptor blockers for stress ulcer prophylaxis in patients with sepsis: A retrospective cohort study. J. Int. Med. Res. 2021, 49, 3000605211025130. [Google Scholar] [CrossRef]
- D’Silva, K.M.; Mehta, R.; Mitchell, M.; Lee, T.C.; Singhal, V.; Wilson, M.G.; McDonald, E.G. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; George, C.; Bellomo, R.; ANZICS Database Management Committee. Early acute kidney injury and sepsis: A multicentre evaluation. Crit. Care 2008, 12, R47. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef]
- Cobussen, M.; Verhave, J.C.; Buijs, J.; Stassen, P.M. The incidence and outcome of AKI in patients with sepsis in the emergency department applying different definitions of AKI and sepsis. Int. Urol. Nephrol. 2023, 55, 183–190. [Google Scholar] [CrossRef]
- Hellman, T.; Uusalo, P.; Järvisalo, M.J. Renal Replacement Techniques in Septic Shock. Int. J. Mol. Sci. 2021, 22, 10238. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Pasin, L.; Boraso, S.; Tiberio, I. Early initiation of renal replacement therapy in critically ill patients: A meta-analysis of randomized clinical trials. BMC Anesthesiol. 2019, 19, 62. [Google Scholar] [CrossRef]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.P.; et al. Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef]
- Chen, W.Y.; Cai, L.H.; Zhang, Z.H.; Tao, L.L.; Wen, Y.C.; Li, Z.B.; Li, L.; Ling, Y.; Li, J.W.; Xing, R.; et al. The timing of continuous renal replacement therapy initiation in sepsis-associated acute kidney injury in the intensive care unit: The CRTSAKI Study (Continuous RRT Timing in Sepsis-associated AKI in ICU): Study protocol for a multicentre, randomised controlled trial. BMJ Open 2021, 11, e040718. [Google Scholar]
- Annane, D.; Renault, A.; Brun-Buisson, C.; Megarbane, B.; Quenot, J.P.; Siami, S.; Cariou, A.; Forceville, X.; Schwebel, C.; Martin, C.; et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N. Engl. J. Med. 2018, 378, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Bellissant, E.; Bollaert, P.E.; Briegel, J.; Keh, D.; Kupfer, Y.; Pirracchio, R.; Rochwerg, B. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst. Rev. 2019, 12, CD002243. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Zhang, Y.; Tang, J.; Lunsford, L.D.; Li, T.; Tang, R.; He, J.; Xu, P.; Faramand, A.; Xu, J.; et al. Association of Corticosteroid Treatment with Outcomes in Adult Patients with Sepsis: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Keh, D.; Trips, E.; Marx, G.; Wirtz, S.P.; Abduljawwad, E.; Bercker, S.; Bogatsch, H.; Briegel, J.; Engel, C.; Gerlach, H.; et al. Effect of Hydrocortisone on Development of Shock Among Patients with Severe Sepsis: The HYPRESS Randomized Clinical Trial. JAMA 2016, 316, 1775–1785. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, C. Effects of Hydrocortisone on Regulating Inflammation, Hemodynamic Stability, and Preventing Shock in Severe Sepsis Patients. Med. Sci. Monit. 2018, 24, 3612–3619. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.M.; Au, S.Y.; Ng, G.W.Y. Steroid, ascorbic acid, and thiamine in adults with sepsis and septic shock: A systematic review and component network meta-analysis. Sci. Rep. 2021, 11, 15777. [Google Scholar] [CrossRef]
- Jacobi, J. Pathophysiology of sepsis. Am. J. Health Syst. Pharm. 2002, 59, S3–S8. [Google Scholar] [CrossRef]
- Maciel, A.T.; Noritomi, D.T.; Park, M. Metabolic acidosis in sepsis. Endocr. Metab. Immune Disord. Drug Targets 2010, 10, 252–257. [Google Scholar] [CrossRef]
- Suetrong, B.; Walley, K.R. Lactic Acidosis in Sepsis: It’s Not All Anaerobic: Implications for Diagnosis and Management. Chest 2016, 149, 252–261. [Google Scholar] [CrossRef]
- Rudnick, M.R.; Blair, G.J.; Kuschner, W.G.; Barr, J. Lactic Acidosis and the Role of Sodium Bicarbonate: A Narrative Opinion. Shock 2020, 53, 528–536. [Google Scholar] [CrossRef]
- Yagi, K.; Fujii, T. Management of acute metabolic acidosis in the ICU: Sodium bicarbonate and renal replacement therapy. Crit. Care 2021, 25, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, C.; Mo, L.; Hong, Y. Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis. Intensive Care Med. 2018, 44, 1888–1895. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Rimmele, T.; Le Goff, C.; Chanques, G.; Corne, P.; Jonquet, O.; Muller, L.; Lefrant, J.Y.; Guervilly, C.; Papazian, L.; et al. Severe metabolic or mixed acidemia on intensive care unit admission: Incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit. Care 2011, 15, R238. [Google Scholar] [CrossRef] [PubMed]
- Duhon, B.; Attridge, R.L.; Franco-Martinez, A.C.; Maxwell, P.R.; Hughes, D.W. Intravenous sodium bicarbonate therapy in severely acidotic diabetic ketoacidosis. Ann. Pharmacother. 2013, 47, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Jaber, S.; Paugam, C.; Futier, E.; Lefrant, J.Y.; Lasocki, S.; Lescot, T.; Pottecher, J.; Demoule, A.; Ferrandière, M.; Asehnoune, K.; et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): A multicentre, open-label, randomised controlled, phase 3 trial. Lancet 2018, 392, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Inage, S.; Yajima, R.; Nagahara, S.; Kazama, A.; Takamura, M.; Shoji, T.; Kadoi, M.; Tashiro, Y.; Ise, Y. Acetaminophen-induced hypotension in sepsis. J. Pharm. Health Care Sci. 2022, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Sakkat, A.; Alquraini, M.; Aljazeeri, J.; Farooqi, M.A.M.; Alshamsi, F.; Alhazzani, W. Temperature control in critically ill patients with fever: A meta-analysis of randomized controlled trials. J. Crit. Care 2021, 61, 89–95. [Google Scholar] [CrossRef] [PubMed]
MRSA |
|
ESBL |
|
Pseudomonas aeruginosa |
|
Candida spp. |
|
Infection Site | I Choice | II Choice | Allergy to Penicillin | Risk Factors for ESBL+ | Risk Factors for MRSA | |
---|---|---|---|---|---|---|
Pulmonary [57,58] | CAP | Amoxicillin/Clavulanate 2.2 g/tid + Azithromycin 500 mg/die or Clarithromycin 500 mg/bid | Levofloxacin 750 mg/die | Levofloxacin 750 mg/die | Piperacillin/Tazobactam 9 g LD followed by 18 g/die + Levofloxacin 750 mg/die or Meropenem 2 g LD followed by 2 g/tid | Levofloxacin 750 mg/die + Linezolid 600 mg/bid or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid |
HAP | Piperacillin/Tazobactam 9 g LD followed by 18 g/die or Cefepime 1 g LD followed by 2 g/tid + Linezolid 600 mg/bid | Levofloxacin 750 mg/die + Linezolid 600 mg/bid | Levofloxacin 750 mg/die + Linezolid 600 mg/bid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die + Meropenem 2 g LD followed by 2 g/tid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die or Cefepime 1 g LD followed by 2 g/tid + Gentamicin 5–7 mg/kg/die + Linezolid 600 mg/bid or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid | |
VAP | Piperacillin/Tazobactam 9 g LD followed by 18 g/die or Cefepime 1 g LD followed by 2 g/tid + Linezolid 600 mg/bid | Levofloxacin 750 mg/die + Linezolid 600 mg/bid | Levofloxacin 750 mg/die + Linezolid 600 mg/bid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die + Meropenem 2 g LD followed by 2 g/tid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die or Cefepime 1 g LD followed by 2 g/tid + Linezolid 600 mg/bid or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid | |
Urinary [59] | Community | Piperacillin/Tazobactam 9 g LD followed by 18 g/die | Ciprofloxacin 500 mg/bid | Ciprofloxacin 500 mg/bid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die | Piperacillin/Tazobactam 9 g LD followed by 18 g/die or Meropenem 2 g LD followed by 2 g/tid |
Nosocomial | Piperacillin/Tazobactam 9 g LD followed by 18 g/die | Meropenem 2 g LD followed by 2 g/tid | Meropenem 2 g LD followed by 2 g/tid | Meropenem 2 g LD followed by 2 g/tid | Meropenem 2 g LD followed by 2 g/tid | |
Abdominal [60,61] | Community | Amoxicillin/Clavulanate 2.2 g/tid or Ceftriaxone 2 g/die + Metronidazole 500 mg/qid | Piperacillin/Tazobactam 9 g LD followed by 18 g/die | Ciprofloxacin 500 mg/bid + Metronidazole 500 mg/qid | Meropenem 2 g LD followed by 2 g/tid | Meropenem 2 g LD followed by 2 g/tid + Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid |
Nosocomial | Piperacillin/Tazobactam 9 g LD followed by 18 g/die | Meropenem 2 g LD followed by 2 g/tid | Ciprofloxacin 500 mg/bid + Metronidazole 500 mg/qid | Meropenem 2 g LD followed by 1 g/tid | Meropenem 2 g LD followed by 2 g/tid + Tigecycline 100 mg LD followed by 100 mg/bid ± Caspofungin 70 mg LD followed by 50 mg/die | |
CNS [62] | <50 years | Dexamethasone 0.1 mg/kg/qid + Ceftriaxone 2 g/die ± Acyclovir 10 mg/kg/tid | Dexamethasone 0.1 mg/kg/qid + Meropenem 2 g LD followed by 2 g/tid ± Acyclovir 10 mg/kg/tid | Dexamethasone 0.1 mg/kg/qid + Meropenem 2 g LD followed by 2 g/tid ± Acyclovir 10 mg/kg/tid | / | / |
>50 years | Dexamethasone 0.1 mg/kg/qid + Ceftriaxone 2 g/die + Ampicillin 12 g/die ± Acyclovir 10 mg/kg/tid | Dexamethasone 0.1 mg/kg/qid + Meropenem 2 g LD followed by 2 g/tid ± Acyclovir 10 mg/kg/tid | Dexamethasone 0.1 mg/kg/qid + Meropenem 2 g LD followed by 2 g/tid ± Acyclovir 10 mg/kg/tid | / | / | |
Skin [63,64] | Cellulitis | Amoxicillin/Clavulanate 2.2 g/tid ± Clindamycin 600 mg/qid | Ceftriaxone 2 g/die | Levofloxacin 750 mg/die | Piperacillin/Tazobactam 9 g LD followed by 18 g/die + Meropenem 2 g LD followed by 2 g/tid | Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid |
NF | Daptomycin 8–10 mg/kg/die + Clindamycin 600 mg/qid + Piperacillin/Tazobactam 9 g LD followed by 18 g/die | / | Daptomycin 8–10 mg/kg/die + Clindamycin 600 mg/qid + Meropenem 2 g LD followed by 2 g/tid | Daptomycin 8–10 mg/kg/die + Clindamycin 600 mg/qid + Meropenem 2 g LD followed by 2 g/tid | Daptomycin 8–10 mg/kg/die + Clindamycin 600 mg/qid + Meropenem 2 g LD followed by 2 g/tid | |
Gyn [65] | Clindamycin 600 mg/qid + Gentamicin 5–7 mg/kg/die | / | Clindamycin 600 mg/qid + Gentamicin 5–7 mg/kg/die | Meropenem 2 g LD followed by 2 g/tid | Meropenem 2 g LD followed by 2 g/tid | |
Undefined [66] | Piperacillin/Tazobactam 9 g LD followed by 18 g/die + Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid ± Caspofungin 70 mg LD followed by 50 mg/die | Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid + Meropenem 2 g LD followed by 2 g/tid ± Caspofungin 70 mg LD followed by 50 mg/die | Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid + Meropenem 2 g LD followed by 2 g/tid ± Caspofungin 70 mg LD followed by 50 mg/die | Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid + Meropenem 2 g LD followed by 2 g/tid ± Caspofungin 70 mg LD followed by 50 mg/die | Daptomycin 8–10 mg/kg/die or Vancomycin 25–30 mg/kg LD than 20 mg/kg/bid + Meropenem 2 g LD followed by 2 g/tid ± Caspofungin 70 mg LD followed by 50 mg/die |
Pillars of Treatment | Emergency Physician’s Perspectives |
---|---|
Antimicrobials |
|
Fluids |
|
Vasoactive Agents |
|
Oxygenation and Ventilation Support |
|
Other Treatments |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarino, M.; Perna, B.; Cesaro, A.E.; Maritati, M.; Spampinato, M.D.; Contini, C.; De Giorgio, R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. J. Clin. Med. 2023, 12, 3188. https://doi.org/10.3390/jcm12093188
Guarino M, Perna B, Cesaro AE, Maritati M, Spampinato MD, Contini C, De Giorgio R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. Journal of Clinical Medicine. 2023; 12(9):3188. https://doi.org/10.3390/jcm12093188
Chicago/Turabian StyleGuarino, Matteo, Benedetta Perna, Alice Eleonora Cesaro, Martina Maritati, Michele Domenico Spampinato, Carlo Contini, and Roberto De Giorgio. 2023. "2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department" Journal of Clinical Medicine 12, no. 9: 3188. https://doi.org/10.3390/jcm12093188
APA StyleGuarino, M., Perna, B., Cesaro, A. E., Maritati, M., Spampinato, M. D., Contini, C., & De Giorgio, R. (2023). 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. Journal of Clinical Medicine, 12(9), 3188. https://doi.org/10.3390/jcm12093188