Relationship of the Aggregation of Cardiovascular Risk Factors in the Parasympathetic Modulation of Young People with Type 1 Diabetes
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Ethical Aspects
2.3. Data Collection
2.4. Characterization of the Sample
2.5. Assessment of Risk Factors
2.6. Aggregation of Risk Factors
2.7. Autonomic Assessment
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Xie, G.; Wang, J.; Yang, S. Cardiovascular risk factors significantly correlate with autonomic nervous system activity in children. Can. J. Cardiol. 2012, 28, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Farah, B.Q.; Barros, M.V.G.; Balagopal, B.; Ritti-Dias, R.M. Heart rate variability and cardiovascular risk factors in adolescent boys. J. Pediatr. 2014, 165, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.M.; Woo, J.M. Determinants for heart rate variability in a normal Korean population. J. Korean Med. Sci. 2011, 26, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.M.; Vinik, A.I.; Arezzo, J.C.; Bril, V.; Feldman, E.L.; Freeman, R.; Malik, R.A.; Maser, R.E.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathies: A statement by the American Diabetes Association. Diabetes Care 2005, 28, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D. Diabetic cardiovascular autonomic neuropathy: Prognosis, Diagnosis and Treatment. Circulation 1994, 10, 339–383. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Contreras, P.; Migliaro, E.R. Asymmetrical properties of heart rate variability in type 1 diabetes. Clin. Auton. Res. 2010, 20, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.; Urbina, E.M.; Wadwa, R.P.; Talton, J.W.; D’Agostino, R.B.; Hamman, R.F.; Fingerlin, T.E.; Daniels, S.; Marcovina, S.M.; Dolan, L.M.; et al. Reduced heart rate variability among youth with type 1 diabetes: The SEARCH CVD study. Diabetes Care 2013, 36, 157–162. [Google Scholar] [CrossRef]
- Souza, N.M.; Giacon, T.R.; Pacagnelli, F.L.; Barbosa, M.P.; Valenti, V.E.; Vanderlei, L.C. Dynamics of heart rate variability analysed through nonlinear and linear dynamics is already impaired in young type 1 diabetic subjects. Cardiol. Young 2016, 26, 1383–1390. [Google Scholar] [CrossRef] [Green Version]
- Maser, R.; Mitchell, B.; Vinik, A.; Freeman, R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: A meta-analysis. Diabetes Care 2003, 26, 1895–1901. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Francis, D.P.; Rubens, M.B.; Underwood, S.R.; Fuller, J.H. The association of heart-rate variability with cardiovascular risk factors and coronary artery calcification: A study in type 1 diabetic patients and the general population. Diabetes Care 2001, 24, 1108–1114. [Google Scholar] [CrossRef]
- Witte, D.R.; Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.M.; Kempler, P.; Fuller, J.H.; EURODIAB Prospective Complications Study Group. Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia 2005, 48, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.K.; Christofaro, D.G.; Vanderlei, F.M.; Barbosa, M.P.; Garner, D.M.; Vanderlei, L.C. Association of cardiac autonomic modulation with physical and clinical features of young people with type 1 diabetes. Cardiol. Young 2017, 27, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, C.; Psallas, M.; Kokkinos, A.; Argiana, V.; Katsilambros, N.; Tentolouris, N. The association between cardiac autonomic neuropathy with metabolic and other factors in subjects with type 1 and type 2 diabetes. J. Diabetes Complicat. 2011, 25, 159–167. [Google Scholar] [CrossRef] [PubMed]
- López Sánchez, G.L.; López Sánchez, L.; Díaz Suárez, A. Body composition and heart rate variability: Relations to age, sex, obesity adn physical activity. Sport Tk-Rev. Euroam. Cienc. Deporte 2015, 4, 33–40. [Google Scholar] [CrossRef]
- Maahs, D.M.; Daniels, S.R.; De Ferranti, S.D.; Dichek, H.L.; Flynn, J.; Goldstein, B.I.; Kelly, A.S.; Nadeau, K.J.; Martyn-Nemeth, P.; Osganian, S.K.; et al. Cardiovascular disease risk factors in youth with diabetes mellitus: A scientific statement from the American heart association. Circulation 2014, 130, 1532–1558. [Google Scholar] [CrossRef] [PubMed]
- Von Wichmann, M.D.L.F.; Bargallób, E.V. Heart rate and cardiovascular risk. Hipertens. y Riesgo Vasc. 2011, 28, 9–15. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Peter, C.; Gøtzsche, P.C.; Vandenbroucke, J.P. Guidelines for reporting observational studies Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Br. Med. J. 2007, 335, 19–22. [Google Scholar]
- Godoy, M.F.; Takakura, I.T.; Correa, P.R. The relevance of nonlinear dynamic analysis (Chaos Theory) to predict morbidity and mortality in patients undergoing surgical myocardial revascularization. Arq. Ciência Saúde 2005, 12, 167–171. [Google Scholar]
- Ewing, D.J.; Neilson, J.M.; Shapiro, C.M.; Stewart, J.A.; Reid, W. Twenty four hour heart rate variability: Effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Heart 1991, 65, 239–244. [Google Scholar] [CrossRef]
- Brazilian Association of Nutrition Brazilian Society of Parenteral and Enteral Nutrition. Use of Bioimpedance for Evaluation of Body Mass; Projects Diretrizes; Brazilian Association of Nutrition Brazilian Society of Parenteral and Enteral Nutrition: São Paulo, Brazil, 2009; pp. 1–13. [Google Scholar]
- Brazilian Association for the Study of Obesity and Metabolic Syndrome. III Brazilian Guidelines for Obesity; Brazilian Association for the Study of Obesity and Metabolic Syndrome: São Paulo, Brazil, 2009; pp. 11–83. [Google Scholar]
- Diabetes Research in Children Network (DirecNet) Study Group. A Multicenter Study of the Accuracy of the One. Diabetes Technol. Ther. 2003, 5, 933–941. [Google Scholar]
- Nathan, D.M. Risk Factors for Cardiovascular Disease in Type 1 Diabetes. Diabetes 2016, 65, 1370–1379. [Google Scholar] [Green Version]
- Khan, H.; Kunutsor, S.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Newman, A.B.; Harris, T.B.; Bibbins-Domingo, K.; Kauhanen, J.; Gheorghiade, M.; Fonarow, G.C.; et al. Resting heart rate and risk of incident heart failure: Three prospective cohort studies and a systematic meta-analysis. J. Am. Heart Assoc. 2015, 4, e001364. [Google Scholar] [CrossRef] [PubMed]
- Hillis, G.S.; Woodward, M.; Rodgers, A.; Chow, C.; Li, Q.; Zoungas, S.; Patel, A. Europe PMC Funders Group Resting Heart Rate and the risk of death and 2 diabetes mellitus. Diabetologia 2014, 55, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-H.; Zeng, F.; Li, Z.; Zhou, L. Association and predictive value analysis for resting heart rate and diabetes mellitus on cardiovascular autonomic neuropathy in general population. J. Diabetes Res. 2014, 2014, 215473. [Google Scholar] [CrossRef] [PubMed]
- Ayad, F.; Belhadj, M.; Pariés, J.; Attali, J.R.; Valensi, P. Association between cardiac autonomic neuropathy and hypertension and its potential influence on diabetic complications. Diabet. Med. 2010, 27, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Valensi, P.; Pariès, J.; Attali, J.R.; Cathelineau, G.; Fossati, P.; Verier-Mine, O.; Monnier, L.; Pouget, J.Y.; Vague, P.; Leutenegger, M.; et al. Cardiac autonomic neuropathy in diabetic patients: Influence of diabetes duration, obesity, and microangiopathic complications—The French multicenter study. Metabolism 2003, 52, 815–820. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B.; Gra, T.; Ichikawa, T.; et al. A Universal Standard for the Validation of Blood Pressure Measuring Devices Association. Hypertension 2018, 71, 368–374. [Google Scholar] [CrossRef]
- Nobre, F. VI Brazilian Guidelines for Hypertension. Arquivos Brasileiros de Cardiologia 2010, 95, 1–51. [Google Scholar]
- Vanderlei, L.C.M.; Silva, R.A.; Pastre, C.M.; Azevedo, F.M.; Godoy, M.F. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz. J. Med. Biol. Res. 2008, 41, 854–859. [Google Scholar] [CrossRef]
- Maltron International Limited. Maltron Body Composition Analysers. Available online: http://www.maltronint.com/products/bf906.php (accessed on 16 July 2019).
- Pollock, M.L.; Wilmore, J. Exercise in Health and Disease; Evaluation and Prescription for Prevention and Rehabilitation. Clin. Cardiol. 1990, 14. [Google Scholar] [CrossRef]
- Vanderlei, L.C.M.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.D.; Godoy, M.F. Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 2009, 24, 205–217. [Google Scholar] [CrossRef]
- Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-ruscone, T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am. J. Physiol-Heart Circ. Physiol. 2007, 293, H702–H708. [Google Scholar] [CrossRef] [Green Version]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV-Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- May, O.; Arildsen, H. Long-term predictive power of simple function tests for cardiovascular autonomic neuropathy in diabetes: A population-based study. Acta Diabetol. 2011, 48, 311–316. [Google Scholar] [CrossRef]
- Vinik, A.I.; Ziegler, D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007, 115, 387–397. [Google Scholar] [CrossRef]
- Kiba, T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: Recent developments. Pancreas 2004, 29, e51–e58. [Google Scholar] [CrossRef]
- Duvnjak, L.; Tomić, M.; Blaslov, K.; Vučković Rebrina, S. Autonomic nervous system function assessed by conventional and spectral analysis might be useful in terms of predicting retinal deterioration in persons with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 116, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Stettler, C.; Bearth, A.; Allemann, S.; Zwahlen, M.; Zanchin, L.; Deplazes, M.; Christ, E.R.; Teuscher, A.; Diem, P. QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: A 23-year follow-up. Diabetologia 2007, 50, 186–194. [Google Scholar] [CrossRef]
- Anselmino, M.; Öhrvik, J.; Rydén, L. Resting heart rate in patients with stable coronary artery disease and diabetes: A report from the Euro Heart Survey on Diabetes and the Heart. Eur. Heart J. 2010, 31, 3040–3045. [Google Scholar] [CrossRef]
- Singh, J.P.; Larson, M.G.; Tsuji, H.; Evans, J.C.; O’Donnell, C.J.; Levy, D. Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension 1998, 32, 293–297. [Google Scholar] [CrossRef]
- Goit, R.K.; Ansari, A.H. Reduced parasympathetic tone in newly diagnosed essential hypertension. Indian Heart J. 2015, 68, 153–157. [Google Scholar] [CrossRef]
- Istenes, I.; Keresztes, K.; Hermányi, Z.; Putz, Z.; Vargha, P.; Gandhi, R.; Tesfaye, S.; Kempler, P. Relationship between autonomic neuropathy and hypertension-are we underestimating the problem? Diabet. Med. 2008, 25, 863–866. [Google Scholar] [CrossRef]
- Kreier, F.; Fliers, E.; Voshol, P.J.; Van Eden, C.G.; Havekes, L.M.; Kalsbeek, A.; Van Heijningen, C.L.; Sluiter, A.A.; Mettenleiter, T.C.; Romijn, J.A.; et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-Functional implications. J. Clin. Investig. 2002, 110, 1243–1250. [Google Scholar] [CrossRef]
- Hillebrand, S.; Swenne, C.A.; Gast, K.B.; Maan, A.C.; le Cessie, S.; Jukema, J.W.; Rosendaal, F.R.; den Heijer, M.; de Mutsert, R. The role of insulin resistance in the association between body fat and autonomic function. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 93–99. [Google Scholar] [CrossRef]
- Nguyen, L.; Su, S.; Nguyen, H.T. Effects of hyperglycemia on variability of RR, QT and corrected QT intervals in Type 1 diabetic patients. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1819–1822. [Google Scholar]
- Howorka, K. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cradiovasc. Res. 1997, 9149, 206–214. [Google Scholar] [CrossRef]
- Balducci, S.; Zanuso, S.; Nicolucci, A.; Feo, P.D.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Fallucca, F.; Pugliese, G.; et al. Effect of an Intensive Exercise Intervention Strategy on Modifiable Cardiovascular Risk Factors in Subjects with Type 2 Diabetes Mellitus. Arch. Intern. Med. 2011, 170, 1794–1803. [Google Scholar] [CrossRef]
- Lehmann, R.; Kaplan, V.; Bingisser, R.; Bloch, K.E.; Spinas, G.A. Impact of physical activity on cardiovascular risk factors in IDDM. Diabetes Care 1997, 20, 1603–1611. [Google Scholar] [CrossRef]
- Katz, M.; Giani, E.; Laffel, L. Challenges and Opportunities in the Management of Cardiovascular Risk Factors in Youth With Type 1 Diabetes: Lifestyle and Beyond. Curr. Diab. Rep. 2015, 15, 119. [Google Scholar] [CrossRef]
Variables | Zero (n = 14) | One (n = 15) | ≥Two (n = 10) * | P |
Mean ± SD | ||||
Age (years) | 22.28 ± 5.07 | 21.93 ± 2.96 | 23.80 ± 4.73 | 0.550 |
Disease duration | 11.42 ± 6.69 | 10.46 ± 4.74 | 14.00 ± 6.56 | 0.353 |
Random blood glycemia (mg/dl) | 153.64 ± 92.44 | 156.73 ± 87.50 | 243.8 ± 97.52 a | 0.042 |
Body weight (kg) | 70.33 ± 13.20 | 75.40 ± 17.73 | 75.23 ± 14.98 | 0.632 |
Height (m) | 1.76 ± 0.10 | 1.68 ± 0.09 | 1.66 ± 0.08 a | 0.028 |
BMI (Kg/m²) | 22.51 ± 2.95 | 26.43 ± 5.70 a | 27.10 ± 3.96 a | 0.026 |
SBP (mmHg) | 109.42 ± 9.99 | 110.00 ± 10.00 | 119.00 ± 15.95 | 0.113 |
DBP (mmHg) | 61.14 ± 9.27 | 68.66 ± 11.87 | 68.66 ± 11.87 | 0.060 |
Pulse pressure | 48.28 ± 9.50 | 41.33 ± 8.33 | 48.00 ± 13.16 | 0.122 |
HR (bpm) | 73.14 ± 6.57 | 81.80 ± 8.51 a | 89.00 ± 10.21 a | 0.000 |
Body fat (%) | 19.43 ± 6.35 | 27.66 ± 11.42 a | 31.73 ± 6.77 a | 0.004 |
Risk Factors proportion | N (%) | |||
One (n = 15) | ≥Two (n = 10) | |||
High SBP and/or DBP (mmHg) | 2 (13.33%) 5 (33.33%) 8 (53.33%) | 5 (50.00%) 8 (80.00%) 9 (90.00%) | ||
High HR (bpm) | ||||
High body fat (%) |
Cluster of Cardiovascular Risk Factors (≥2 Risk Factors) | ||||||
---|---|---|---|---|---|---|
Unadjusted | Adjusted * | |||||
Odds Ratio | CI (95%) | P | Odds Ratio | CI (95%) | P | |
rMSSD | 0.93 | 0.86; 0.98 | 0.021 | 0.84 | 0.72; 0.99 | 0.042 |
HF n.u | 0.97 | 0.92; 1.02 | 0.245 | 0.97 | 0.90; 1.03 | 0.356 |
pNN50 | 0.92 | 0.84; 0.99 | 0.048 | 0.83 | 0.71; 0.98 | 0.037 |
SD1 | 0.90 | 0.81; 0.98 | 0.021 | 0.79 | 0.63; 0.99 | 0.043 |
2LV | 0.94 | 0.84; 1.05 | 0.301 | 0.94 | 0.77; 1.13 | 0.527 |
2ULV | 0.97 | 0.87; 1.06 | 0.966 | 0.87 | 0.71; 1.06 | 0.874 |
Number of CRF | Zero (n = 14) | One (n = 15) | ≥Two (n = 10) | P |
---|---|---|---|---|
Mean ± SD | ||||
rMSSD | 38.82 ± 15.60 | 35.02 ± 18.43 | 20.75 ± 13.32 a | 0.031 |
HF n.u | 47.20 ± 9.97 | 46.98 ± 14.71 | 40.72 ± 20.37 | 0.515 |
pNN50 | 19.53 ± 15.08 | 16.52 ± 17.59 | 5.57 ± 9.68 | 0.082 |
SD1 | 27.47 ± 11.03 | 24.78 ± 13.04 | 14.70 ± 9.52 a | 0.031 |
2LV | 13.64 ± 7.34 | 11.22 ± 4.77 | 9.83 ± 8.18 | 0.374 |
2ULV | 18.52 ± 9.51 | 17.66 ± 9.89 | 15.77 ± 5.98 | 0.756 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
França da Silva, A.K.; Destro Christofaro, D.G.; Manata Vanzella, L.; Marques Vanderlei, F.; Lopez Laurino, M.J.; Marques Vanderlei, L.C. Relationship of the Aggregation of Cardiovascular Risk Factors in the Parasympathetic Modulation of Young People with Type 1 Diabetes. Medicina 2019, 55, 534. https://doi.org/10.3390/medicina55090534
França da Silva AK, Destro Christofaro DG, Manata Vanzella L, Marques Vanderlei F, Lopez Laurino MJ, Marques Vanderlei LC. Relationship of the Aggregation of Cardiovascular Risk Factors in the Parasympathetic Modulation of Young People with Type 1 Diabetes. Medicina. 2019; 55(9):534. https://doi.org/10.3390/medicina55090534
Chicago/Turabian StyleFrança da Silva, Anne Kastelianne, Diego Giulliano Destro Christofaro, Laís Manata Vanzella, Franciele Marques Vanderlei, Maria Júlia Lopez Laurino, and Luiz Carlos Marques Vanderlei. 2019. "Relationship of the Aggregation of Cardiovascular Risk Factors in the Parasympathetic Modulation of Young People with Type 1 Diabetes" Medicina 55, no. 9: 534. https://doi.org/10.3390/medicina55090534
APA StyleFrança da Silva, A. K., Destro Christofaro, D. G., Manata Vanzella, L., Marques Vanderlei, F., Lopez Laurino, M. J., & Marques Vanderlei, L. C. (2019). Relationship of the Aggregation of Cardiovascular Risk Factors in the Parasympathetic Modulation of Young People with Type 1 Diabetes. Medicina, 55(9), 534. https://doi.org/10.3390/medicina55090534