Ramadan Intermittent Fasting Is Associated with Changes in Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Metabolically Healthy Obese Subjects
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design
2.2. Subjects
2.3. Anthropometric Assessment
2.4. Biochemical Assessment
2.5. Dietary Intake Assessment
2.6. Physical Activity Level
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.E.; Sears, D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalsen, A.; Hoffmann, B.; Moebus, S.; Bäcker, M.; Langhorst, J.; Dobos, G.J. Incorporation of Fasting Therapy in an Integrative Medicine Ward: Evaluation of Outcome, Safety, and Effects on Lifestyle Adherence in a Large Prospective Cohort Study. J. Altern. Complement. Med. 2005, 11, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.; Pirani, S. Meal frequency and nutritional intake during Ramadan: A pilot study. Hum. Nutr. Appl. Nutr. 1987, 41, 47–50. [Google Scholar] [PubMed]
- Faris, M.A.-I.E.; Jahrami, H.A.; AlHayki, F.A.; Alkhawaja, N.A.; Ali, A.M.; Aljeeb, S.H.; Abdulghani, I.H.; Bahammam, A.S. Effect of diurnal fasting on sleep during Ramadan: A systematic review and meta-analysis. Sleep Breath. 2019, 24, 771–782. [Google Scholar] [CrossRef]
- Finch, G.M.; Day, J.; Welch, D.A.; Rogers, P.J. Appetite Changes Under Free-living Conditions During Ramadan Fasting. Appetite 1998, 31, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, N.; Madkour, M.; Jahrami, H.; Salahat, D.; Alhasan, F.; BaHammam, A.; Faris, M.A.-I. Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: A prospective observational study. PLoS ONE 2020, 15, e0237922. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.A.-I.E.; Jahrami, H.A.; Alsibai, J.; Obaideen, A.A. Impact of Ramadan diurnal intermittent fasting on the metabolic syndrome components in healthy, non-athletic Muslim people aged over 15 years: A systematic review and meta-analysis. Br. J. Nutr. 2020, 123, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.; Madkour, M.I.; Obaideen, A.K.; Dalah, E.Z.; Hasan, H.A.; Radwan, H.; Jahrami, H.A.; Hamdy, O.; Mohammad, M.G. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res. Clin. Pract. 2019, 153, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, M.E.; Jahrami, H.A.; Obaideen, A.A.; Madkour, M.I. Impact of diurnal intermittent fasting during Ramadan on inflammatory and oxidative stress markers in healthy people: Systematic review and meta-analysis. J. Nutr. Intermed. Metab. 2018, 15, 18–26. [Google Scholar] [CrossRef]
- Faris, M.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res. 2012, 32, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.; Alsibai, J.; Clark, C.C.T.; Faris, M.E. A systematic review, meta-analysis and meta-regression of the impact of diurnal intermittent fasting during Ramadan on body weight in healthy subjects aged 16 years and above. Eur. J. Nutr. 2020, 59, 2291–2316. [Google Scholar] [CrossRef]
- Fernando, H.A.; Zibellini, J.; Harris, R.A.; Seimon, R.V.; Sainsbury, A. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete Adults: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, M.; Jahrami, H.; BaHammam, A.; Kalaji, Z.; Madkour, M.; Hassanein, M. A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res. Clin. Pract. 2020, 165, 108226. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.A.; Faris, M.E.; Janahi, A.I.; Janahi, M.I.; Abdelrahim, D.N.; Madkour, M.I.; Sater, M.S.; Hassan, A.B.; Bahammam, A.S. Does four-week consecutive, dawn-to-sunset intermittent fasting during Ramadan affect cardiometabolic risk factors in healthy adults? A systematic review, meta-analysis, and meta-regression. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2273–2301. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.; Jahrami, H.; Abdelrahim, D.; Bragazzi, N.; BaHammam, A. The effects of Ramadan intermittent fasting on liver function in healthy adults: A systematic review, meta-analysis, and meta-regression. Diabetes Res. Clin. Pract. 2021, 178, 108951. [Google Scholar] [CrossRef]
- Santos, H.O.; Macedo, R.C. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin. Nutr. ESPEN 2018, 24, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Pureza, I.R.D.O.M.; Macena, M.D.L.; Junior, A.E.D.S.; Praxedes, D.R.S.; Vasconcelos, L.G.L.; Bueno, N.B. Effect of early time-restricted feeding on the metabolic profile of adults with excess weight: A systematic review with meta-analysis. Clin. Nutr. 2020, 40, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F. Islamic fasting and health. Ann. Nutr. Metab. 2010, 56, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Lagace, T.A. PCSK9 and LDLR degradation. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Nozue, T. Lipid Lowering Therapy and Circulating PCSK9 Concentration. J. Atheroscler. Thromb. 2017, 24, 895–907. [Google Scholar] [CrossRef] [Green Version]
- Hamamura, H.; Adachi, H.; Enomoto, M.; Fukami, A.; Nakamura, S.; Nohara, Y.; Morikawa, N.; Sakaue, A.; Toyomasu, K.; Yamamoto, M.; et al. Serum Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is Independently Associated with Insulin Resistance, Triglycerides, Lipoprotein(a) Levels but not Low-Density Lipoprotein Cholesterol Levels in a General Population. J. Atheroscler. Thromb. 2021, 28, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.; Abujrad, H. PCSK9 as a biomarker of cardiovascular disease. In Biomarkers in Cardiovascular Disease; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Awadallah, S.; Taneera, J.; Mohammed, A.K.; Unnikannan, H.; Sulaiman, N. Combined intake of glucose-and lipid-lowering medications further elevates plasma levels of PCSK9 in type 2 diabetes patients. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2087–2092. [Google Scholar] [CrossRef] [PubMed]
- Shafabakhsh, R.; Reiner, Ž.; Hallajzadeh, J.; Mirsafaei, L.; Asemi, Z. Are anti-inflammatory agents and nutraceuticals-novel inhibitors of PCSK9? Crit. Rev. Food Sci. Nutr. 2020, 61, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Horton, J.D. Fasting reduces plasma proprotein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J. Lipid Res. 2010, 51, 3359–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoddy, K.K.; Marlatt, K.L.; Cetinkaya, H.; Ravussin, E. Intermittent Fasting and Metabolic Health: From Religious Fast to Time-Restricted Feeding. Obesity 2020, 28, S29–S37. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Häring, H.-U.; Hu, F.B.; Schulze, M.B. Metabolically healthy obesity: Epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013, 1, 152–162. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Otten, J.; Hellwig, J.; Meyers, L. Institute of Medicine. In Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Levenson, A.; Milliren, C.; Biddinger, S.; Ebbeling, C.; Feldman, H.; Ludwig, D.; De Ferranti, S. Calorically restricted diets decrease PCSK9 in overweight adolescents. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koebnick, C.; Black, M.H.; Wu, J.; Shu, Y.-H.; MacKay, A.W.; Watanabe, R.M.; Buchanan, T.A.; Xiang, A.H. A diet high in sugar-sweetened beverage and low in fruits and vegetables is associated with adiposity and a pro-inflammatory adipokine profile. Br. J. Nutr. 2018, 120, 1230–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Li, S.; Cui, C.-J.; Zhang, Y.; Yang, S.-H.; Li, J.-J. Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: Linking dyslipidemia with obesity. J. Transl. Med. 2016, 14, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macchi, C.; Greco, M.F.; Botta, M.; Sperandeo, P.; Dongiovanni, P.; Valenti, L.; Cicero, A.F.; Borghi, C.; Lupo, M.G.; Romeo, S.; et al. Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9. Am. J. Pathol. 2020, 190, 2226–2236. [Google Scholar] [CrossRef] [PubMed]
- Ruscica, M.; Botta, M.; Garzone, M.; Macchi, C.; Marchiano, S.; Corsini, A.; Magni, P.; Ferri, N. Pro-inflammatory cytokines and adipokines regulate PCSK9 expression in HepG2 cells. Nutr. Metab. Cardiovasc. Dis. 2017, 27, e35. [Google Scholar] [CrossRef]
- Boyer, M.; Lévesque, V.; Poirier, P.; Marette, A.; Mathieu, P.; Després, J.-P.; Larose, É.; Arsenault, B.J. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J. Clin. Lipidol. 2016, 10, 1353–1361. [Google Scholar] [CrossRef]
- Arsenault, B.J.; Pelletier-Beaumont, E.; Alméras, N.; Tremblay, A.; Poirier, P.; Bergeron, J.; Després, J.-P. PCSK9 levels in abdominally obese men: Association with cardiometabolic risk profile and effects of a one-year lifestyle modification program. Atherosclerosis 2014, 236, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sponder, M.; Campean, I.-A.; Dalos, D.; Emich, M.; Fritzer-Szekeres, M.; Litschauer, B.; Bergler-Klein, J.; Graf, S.; Strametz-Juranek, J. Influence of long-term physical activity on PCSK9, HDL/LDL-C and Lp (a)—A prospective observational trial. Pol. Arch. Intern. Med. 2017, 127, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, K.A.; Leppäluoto, J.; Jokelainen, J.; Jämsä, T.; Keinänen-Kiukaanniemi, S.; Herzig, K.-H. Effect of Physical Activity on Plasma PCSK9 in Subjects with High Risk for Type 2 Diabetes. Front. Physiol. 2019, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Lessan, N.; Saadane, I.; Alkaf, B.; Hambly, C.; Buckley, A.J.; Finer, N.; Speakman, J.R.; Barakat, M.T. The effects of Ramadan fasting on activity and energy expenditure. Am. J. Clin. Nutr. 2018, 107, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatila, H.; Baroudi, M.; Ahmad, R.E.S.; Chehab, R.; Forman, M.R.; Abbas, N.; Faris, M.; Naja, F. Impact of Ramadan Fasting on Dietary Intakes Among Healthy Adults: A Year-Round Comparative Study. Front. Nutr. 2021, 8, 689788. [Google Scholar] [CrossRef] [PubMed]
- Krysa, J.A.; Ooi, T.C.; Proctor, S.D.; Vine, D.F. Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. J. Nutr. 2017, 147, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Singh, A.B.; Azhar, S.; Seidah, N.G.; Liu, J. High-fructose feeding promotes accelerated degradation of hepatic LDL receptor and hypercholesterolemia in hamsters via elevated circulating PCSK9 levels. Atherosclerosis 2015, 239, 364–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nergiz-Unal, R.; Ulug, E.; Kisioglu, B.; Tamer, F.; Bodur, M.; Yalcimin, H.; Yuruk, A.A. Basi Hepatic cholesterol synthesis and lipoprotein levels impaired by dietary fructose and saturated fatty acids in mice: Insight on PCSK9 and CD36. Nutrition 2020, 79, 110954. [Google Scholar]
- Sadiya, A.; Ahmed, S.; Siddieg, H.H.; Babas, I.J.; Carlsson, M. Effect of Ramadan fasting on metabolic markers, body composition, and dietary intake in Emiratis of Ajman (UAE) with metabolic syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2011, 4, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariou, B.; Langhi, C.; Le Bras, M.; Bortolotti, M.; Lê, K.-A.; Theytaz, F.; Le May, C.; Guyomarc’H-Delasalle, B.; Zair, Y.; Kreis, R.; et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr. Metab. 2013, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassab, S.E.; Abdul-Ghaffar, T.; Nagalla, D.S.; Sachdeva, U.; Nayar, U. Serum leptin and insulin levels during chronic diurnal fasting. Asia Pac. J. Clin. Nutr. 2003, 12, 483–487. [Google Scholar] [PubMed]
- Bahijri, S.; Borai, A.; Ajabnoor, G.; Khaliq, A.A.; AlQassas, I.; Al-Shehri, D.; Chrousos, G. Relative Metabolic Stability, but Disrupted Circadian Cortisol Secretion during the Fasting Month of Ramadan. PLoS ONE 2013, 8, e60917. [Google Scholar] [CrossRef]
- Bahammam, A.S.; Almeneessier, A.S. Recent Evidence on the Impact of Ramadan Diurnal Intermittent Fasting, Mealtime, and Circadian Rhythm on Cardiometabolic Risk: A Review. Front. Nutr. 2020, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, L.; Cao, G.; Ståhle, L.; Sjöberg, B.G.; Troutt, J.S.; Konrad, R.J.; Gälman, C.; Wallén, H.; Eriksson, M.; Hafström, I.; et al. Circulating Proprotein Convertase Subtilisin Kexin Type 9 Has a Diurnal Rhythm Synchronous with Cholesterol Synthesis and Is Reduced by Fasting in Humans. Arter. Thromb. Vasc. Biol. 2010, 30, 2666–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Investig. 2006, 116, 2995–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, H.; Attlee, A.; Raigangar, V.; Madkour, M.I.; Awadallah, S. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome components among young adult females. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S337–S341. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, M.C.G.J.; van Greevenbroek, M.M.J.; Konrad, R.J.; Troutt, J.S.; Schaper, N.C.; Stehouwer, C.D.A. Circulating PCSK9 is a strong determinant of plasma triacylglycerols and total cholesterol in homozygous carriers of apolipoprotein ε2. Clin. Sci. 2014, 126, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S.; et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1995, 1, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Seufert, J. Leptin Effects on Pancreatic β-Cell Gene Expression and Function. Diabetes 2004, 53, S152–S158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Kihara, S.; Funahashi, T.; Matsuzawa, Y.; Walsh, K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 2003, 14, 561–566. [Google Scholar] [CrossRef]
- Shimada, K.; Miyazaki, T.; Daida, H. Adiponectin and atherosclerotic disease. Clin. Chim. Acta 2004, 344, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, X.; Li, Q.; Zeng, P.; Liu, Y.; Liu, L.; Chen, Y.; Yu, M.; Ma, C.; Li, X.; et al. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice. Arter. Thromb. Vasc. Biol. 2017, 37, 1290–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.-L.; Xiao, L.-L.; Tang, Z.-H.; Jiang, Z.-S.; Liu, M.-H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother. 2018, 104, 36–44. [Google Scholar] [CrossRef]
- Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today 2017, 22, 883–895. [Google Scholar] [CrossRef]
- Xiao, J.; Deng, Y.-M.; Liu, X.-R.; Cao, J.-P.; Zhou, M.; Tang, Y.-L.; Xiong, W.-H.; Jiang, Z.-S.; Tang, Z.-H.; Liu, L.-S. PCSK9: A new participant in lipophagy in regulating atherosclerosis? Clin. Chim. Acta 2019, 495, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.I.; El-Serafi, A.; Jahrami, H.A.; Sherif, N.M.; Hassan, R.E.; Awadallah, S.; Faris, A.-I.E. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res. Clin. Pract. 2019, 155, 107801. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; Liberopoulos, E.; Georgoula, M.; Tellis, C.C.; Tselepis, A.D.; Elisaf, M. Effects of increased body weight and short-term weight loss on serum PCSK9 levels—A prospective pilot study. Arch. Med. Sci. Atheroscler. Dis. 2017, 2, e46–e51. [Google Scholar] [CrossRef]
- Abdelrahim, D.; Faris, M.E.; Hassanein, M.; Shakir, A.Z.; Yusuf, A.M.; Almeneessier, A.S.; BaHammam, A.S. Impact of Ramadan Diurnal Intermittent Fasting on Hypoglycemic Events in Patients with Type 2 Diabetes: A Systematic Review of Randomized Controlled Trials and Observational Studies. Front. Endocrinol. 2021, 12, 624423. [Google Scholar] [CrossRef] [PubMed]
- Jager, J.; Putnick, D.; Bornstein, M.H. II. More than just convenient: The scientific merits of homogeneous convenience samples. Monogr. Soc. Res. Child Dev. 2017, 82, 13–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | n (%) | ||
---|---|---|---|
Age (Years) | 35 (22) * [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59] ** | ||
Sex | |||
Male | 33 (60) | ||
Female | 22 (40) | ||
Nationality | |||
UAE and other GCC countries | 3 (5.5) | ||
Non-GCC (Jordan, Syria, Palestine, Iraq, Egypt, Sudan, Tunisia) | 52 (94.5) | ||
Marital status | |||
Married | 47 (85) | ||
Single | 8 (15) | ||
Educational level | |||
Basic education | 5 (9) | ||
Undergraduate studies | 44 (80) | ||
Postgraduate studies | 6 (11) | ||
Body mass index (BMI, kg/m2) | Overweight (25–29.9) | 25 (45.5) | |
Obese (≥30) | 30 (54.5) | ||
Blood pressure (mmHg) * | |||
All | Systolic blood pressure (mmHg) | 123.2 (10) * | |
Diastolic blood pressure (mmHg) | 71 (12) * | ||
Female | Systolic blood pressure (mmHg) | 123.2 (11) * | |
Diastolic blood pressure (mmHg) | 71 (12) * | ||
Male | Systolic blood pressure (mmHg) | 125 (14.5) * | |
Diastolic blood pressure (mmHg) | 71 (13.5) * | ||
Physical activity | |||
Sedentary | 52 (95) | ||
Low activity | 2 (3) | ||
Moderately active | 1 (2) | ||
Highly active | - |
Parameter | Before Ramadan * | At the End of Ramadan * | p-Value ** |
---|---|---|---|
Body mass index (kg/m2) | 30.2 (5.4) | 29.7 (5.1) | <0.001 |
Waist circumference (cm) | 95 (10) | 92 (6) | 0.001 |
Systolic blood pressure (mmHg) | 123.2 (10) | 119 (13) | 0.02 |
Diastolic blood pressure (mmHg) | 71 (12) | 69 (11) | 0.049 |
Fasting blood glucose (mg/dL) | 91.5 (10) | 98 (14.9) | 0.05 |
Total cholesterol (mg/dL) | 187.3 (33) | 174.2 (40) | 0.001 |
High-density lipoprotein cholesterol (HDL) (mg/dL) | 44.6 (12) | 40.6 (5.3) | 0.005 |
Triglycerides (mg/dL) | 94.2 (69) | 74.8 (26) | <0.001 |
Low-density lipoprotein cholesterol (LDL) (mg/dL) | 119 (44) | 118.9 (32) | 0.56 |
Serum insulin (ng/mL) | 12.6 (12.1) | 20.3 (14) | 0.002 |
HOMA-IR | 3.01 (3.05) | 4.61 (3.5) | 0.003 |
Adiponectin (µmol/mL) | 24.1 (13.8) | 18.4 (9.6) | 0.001 |
Leptin (ng/mL) | 1685 (1862) | 4043 (6033) | <0.001 |
PCSK9 (ng/mL) | 302 (106) | 369 (121) | 0.002 |
Nutrient | Before Ramadan * | At the End of Ramadan * | p-Value ** |
---|---|---|---|
Total calories (kcal/d) | 1745 (300) | 1835 (684) | 0.22 |
Total fats (g/d) | 602 (109) | 580 (326) | 0.61 |
Protein (g/d) | 69.36 (10.18) | 68.62 (17.88) | 0.30 |
Total carbohydrates (g/d) | 222.7 (44) | 251.2 (79) | 0.02 |
Total sugars (g/d) | 78.28 (24) | 103 (43) | 0.001 |
Saturated fats (g/d) | 67.12 (12) | 64.74 (36) | 0.61 |
Monounsaturated fats (g/d) | 13.93 (3.3) | 13.81 (10.2) | 0.30 |
Polyunsaturated fats (g/d) | 6.98 (1.3) | 9.2 (7) | 0.44 |
trans-fats (mg/d) | 0.83 (0.2) | 0.54 (0.4) | <0.001 |
Cholesterol (mg/d) | 227 (48) | 217 (81) | 0.25 |
Vitamin C (mg/d) | 54.33 (21.4) | 72.37 (45.9) | 0.05 |
Beta-carotene (µg/d) | 732 (499) | 644 (512) | 0.58 |
Omega-3 fatty acids (mg/d) | 0.43 (0.1) | 0.5 (0.7) | 0.002 |
Omega-6 fatty acids (mg/d) | 4.29 (2.1) | 4.69 (3.9) | 0.47 |
Lycopene (µg/d) | 1173 (0.0) | 822 (789) | 0.002 |
Selenium (µg/d) | 52.53 (8.2) | 60.26 (26.7) | 0.81 |
Vitamin E (mg/d) | 3.75 (1.8) | 3.5 (2.5) | 0.26 |
Total water (ml/d) | 1151 (509) | 1821 (772) | <0.001 |
Variable | Before Ramadan (r) | At the End of Ramadan (r) |
---|---|---|
Body mass index | 0.10 | 0.04 |
Waist circumference | 0.10 | −0.007 |
Systolic blood pressure | 0.10 | −0.08 |
Diastolic blood pressure | 0.10 | −0.10 |
Fasting blood glucose | 0.40 ** | 0.17 |
Total cholesterol | 0.06 | −0.10 |
HDL cholesterol | 0.20 | −0.07 |
Triglycerides | 0.28 ** | −0.01 |
LDL cholesterol | −0.49 | −0.13 |
Serum insulin | 0.16 | −0.05 |
HOMA-IR | 0.35 ** | −0.02 |
Adiponectin | −0.068 | 0.176 |
Leptin | 0.042 | 0.30 * |
Nutrient | Before Ramadan (r) | At the End of Ramadan (r) |
---|---|---|
Total calories (kcal/d) | −0.160 | 0.097 |
Protein (g/d) | −0.190 | 0.113 |
Total carbohydrates (g/d) | −0.125 | 0.024 |
Total sugars (g/d) | 0.064 | 0.018 |
Total fats (g/d) | −0.079 | 0.159 |
Saturated fats (g/d) | −0.145 | 0.152 |
Monounsaturated fats (g/d) | −0.101 | 0.178 |
Polyunsaturated fats (g/d) | −0.021 | 0.096 |
trans-fats (mg/d) | −0.037 | 0.172 |
Cholesterol (mg/d) | −0.167 | 0.274 * |
Vitamin C (mg/d) | −0.119 | 0.026 |
Beta-carotene (µg/d) | −0.041 | 0.164 |
Omega-3 fatty acids (mg/d) | 0.007 | 0.245 |
Omega-6 fatty acids (mg/d) | −0.027 | 0.147 |
Lycopene (µg/d) | −0.056 | 0.083 |
Selenium (µg/d) | −0.063 | 0.225 |
Vitamin E (mg/d) | 0.002 | 0.129 |
Total water (ml/d) | −0.047 | −0.217 |
Before Ramadan | At the End of Ramadan | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Adjusted * | Unadjusted | Adjusted * | |||||||||||||
Independent Variable | B | 95% CI | p-Value | B | 95% CI | p-Value | B | 95% CI | p Value | B | 95% CI | p-Value | ||||
U | L | U | L | U | L | U | L | |||||||||
Fasting blood glucose | 2.79 | 1.26 | 4.31 | 0.001 | 2.65 | 0.97 | 4.33 | 0.003 | 1.50 | −1.00 | 4.00 | 0.23 | 1.55 | −1.28 | 4.38 | 0.27 |
Leptin | 0.02 | 0.001 | 0.03 | 0.049 | 0.03 | 0.005 | 0.053 | 0.018 | 0.013 | 0.002 | 0.024 | 0.026 | 0.014 | 0.002 | 0.026 | 0.025 |
Sex | Before Ramadan * | At the End of Ramadan * | p-Value $,** |
---|---|---|---|
Females | 285 (143.7) | 347.2 (137) | 0.08 |
Males | 310 (84.5) | 376 (147) | 0.009 |
p-Value §,** | 0.44 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, H.; Madkour, M.; Awadallah, S.; Hassanein, M.; Jahrami, H.; Faris, M. Ramadan Intermittent Fasting Is Associated with Changes in Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Metabolically Healthy Obese Subjects. Medicina 2022, 58, 503. https://doi.org/10.3390/medicina58040503
Hasan H, Madkour M, Awadallah S, Hassanein M, Jahrami H, Faris M. Ramadan Intermittent Fasting Is Associated with Changes in Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Metabolically Healthy Obese Subjects. Medicina. 2022; 58(4):503. https://doi.org/10.3390/medicina58040503
Chicago/Turabian StyleHasan, Hayder, Mohamed Madkour, Samir Awadallah, Mohamed Hassanein, Haitham Jahrami, and MoezAlIslam Faris. 2022. "Ramadan Intermittent Fasting Is Associated with Changes in Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Metabolically Healthy Obese Subjects" Medicina 58, no. 4: 503. https://doi.org/10.3390/medicina58040503
APA StyleHasan, H., Madkour, M., Awadallah, S., Hassanein, M., Jahrami, H., & Faris, M. (2022). Ramadan Intermittent Fasting Is Associated with Changes in Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Metabolically Healthy Obese Subjects. Medicina, 58(4), 503. https://doi.org/10.3390/medicina58040503