Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery
Abstract
:1. Introduction
2. Review of Antimicrobial Coatings Technologies and Materials
2.1. Passive Surface Modification
2.1.1. Anti-Adhesion Polymers
2.1.2. Albumin and Protein Coating
2.1.3. TiO2
2.2. Active Surface Modification
2.3. Antimicrobial Materials
2.3.1. Metals
- Ag
- Cu
2.3.2. Non-Metal Elements
- Iodine
Antimicrobial Materials | Mechanism | Comments | |
---|---|---|---|
Metals | Ag | (1) Destruction of cell walls and cytoplasmic membrane: silver ions (Ag+) released by silver nanoparticles adhere to or pass through the cell wall and cytoplasmic membrane. (2) Denaturation of ribosomes: silver ions degenerate ribosomes and inhibit protein synthesis. (3) Inhibition of adenosine triphosphate (ATP) production: ATP production is terminated because silver ions deactivate respiratory enzymes on the cytoplasmic membrane. (4) Membrane destruction by reactive oxygen species (ROS): ROS produced by the broken electron transport chain can cause membrane disruption. (5) Inhibition of deoxyribonucleic acid (DNA) replication: silver and reactive oxygen species bind to deoxyribonucleic acid, and prevent replication and cell multiplication. (6) Degeneration of membrane: silver nanoparticles accumulate in the cell wall pits, causing membrane degeneration. (7) Perforation of membrane: silver nanoparticles can migrate directly across the cytoplasmic membrane, and can release organelles from the cell [41]. | A device for total hip arthroplasty coated with hydroxyapatite is now commercially available [11]. |
Cu | Generation of ROS, lipid peroxidation, protein oxidation, and DNA degradation [42]. | The U.S. Environmental Protection Agency certified copper as an antibacterial material in 2008 [6] | |
Zn | Remains unclear. ROS generation and Zn ion release. | Non-cytotoxicity within a concentration from 10−6 M to 10−5 M [43,44]. | |
Ni | Four theories were proposed. (1) essential metals of metalloproteins are replaced by nickel; (2) nickel interrupts catalytic residues of non-metalloenzymes; (3) nickel allosterically inhibit enzymes by binding outside the catalytic site of them; and (4) nickel indirectly produces oxidative stress [45]. | Ni2+as a dopant for ZnO. Used as Cu-Ni, Cu-Ni-Zn [46,47,48]. | |
Pb | Unclear. | Neurotoxicity is a matter of concern. Application to implants is difficult due to the problem of accumulation in the human body [49,50]. | |
Co | Unclear. Competitive inhibitor of iron during (Fe-S) synthesis in essential proteins for bacterial metabolism. [51]. | Co has not been used as antibacterial materials and coatings so far [6]. | |
Mo, W | In situ production of H3Oþ ions by reacting with moisture from the air. | MoO3 has harmful effects on humans. However, it has been reported MoO3 processed into nanoparticles has low toxicity, the capability of biodegradation, and rapid excretion [52]. | |
Zr | Unclear. The interaction of positively-charged zirconium ions and negatively-charged cell wall [53]. | ZrO2 nanoparticles are suggested as a potential antibacterial agent for Gram-negative bacteria. | |
Ga | Inhibits bacterial metabolism. | Because the composition of gallium (III) is similar to that of iron (III), gallium competitively inhibits iron (III), and suppresses iron (III) function. [54]. | |
Ce | (1) Ce ions destroy cell walls and cell membranes because metal ions with strong reduction can extract electrons from the proteins of bacteria. (2) Ce ions can penetrate the cell and destroy the synzyme activity by reacting with the mercapto radical (–S.H.) (3) Ce ions can damage the enzyme system and normal metabolism of bacteria [55]. | One of rare earth (RE). In practice, RE oxides and RE salts are commonly used with inorganic antimicrobial agents, such as TiO2, ZnO, Ag, Cu, and Zn. | |
Sn | Changing the surface properties (wettability) to repel bacteria [56]. | ||
Sr | Inhibiting bacterial cytoplasmic membrane permeability, cell wall synthesis, bacterial chromosome replication, and cell metabolism. | Strontium facilitates bone formation by activating the calcium-sensing receptor, meanwhile inhibiting bone resorption by increasing osteoprotegerin, and preventing receptor activator of nuclear factor kappa B ligand expression [57,58]. | |
La | (1) La ions change the property of the cell wall. (2) La ions interrupt the normal physiological metabolism by interacting with DNA, enzymes, proteins, or other biological molecules, leading to the loss of Ca ions [59]. | It has been reported that the concentration of around 0.15 wt.% La is considered to be the best trade-off. | |
non-Metals | Bacterial cell wall hydrolases | Degradation of cell wall, and impairment of cell wall synthesis. | Limitations against Gram-negative bacteria. Gram-positive pathogens have acquired resistance to lysozymes [60]. |
Antimicrobial proteins peptides; AMPs | (1) Formation of ion channels or pores across the cytoplasmic membrane. (2) Inhibition of wall synthesis. (3) Activities of the ribonuclease (RNase) or deoxyribonuclease (DNase). (4) Depolarization and perforation of the cytoplasmic membrane [61]. | A large family of peptides from diverse natural sources, having various structures and functionalities. | |
Quaternary Ammonium Compounds; QAC | (1) Supporting biocides reach and perforate the cytoplasmic membrane.(2) Positively-charged QACs can detach phospholipids from the cell membrane [62,63,64]. | It is practical to use polymer brushes as anchors, as it is with AMPs [20,21,65,66]. | |
Bacteriophages | Bacteriophages are viruses that infect bacteria. | It is relatively cost-effective. Bacteriophages are host-specific, but can infect several strains and species of bacteria, regardless of whether they are Gram-positive or Gram-negative. Immobilizing phage on sample surfaces such as gold, glass, cellulose membrane, and hydrogels was reported to exhibit antimicrobial activity [61,67,68,69] | |
Fullerene | (1) oxidative stress production, (2) dysfunction of protein, (3) membrane injury, and (4) transcriptional arrest [70]. | Fullerene is a closed-cage nanoparticle, where the conjugation is extended through π-electrons. Fullerenes generally produce a high rate of ROS by illumination. | |
Carbon nanotubes; CNTs | Easily embedded into polymers. Synergistic effects were achieved by creating a CNTs–chitosan composite within the hydrogel, or by decorating CNTs with poly(amidoamine)dendrimer-immobilized carbon quantum dots or Ag2S quantum dots, which increased the antimicrobial activity in solution [71,72]. | ||
Diamond-like carbon | Biofilm formation of Pseudomonas aeruginosa biofilm formation was significantly inhibited, but biofilms of Gram-positive S. aureus were ineffective [73]. | ||
Graphene | Exhibits antibacterial activity in graphene, graphene oxide, and reduced graphene oxide. Synthesized from chitin, which is abundant in nature. Chitosan has a wide range of applications in medical fields, such as controlled drug delivery, wound dressing, tissue engineering, blood anticoagulant, bone regeneration biomaterial, and antimicrobial agent [70]. | ||
Chitosan | It binds to negatively-charged bacterial cell walls, disrupting the cell and altering membrane permeability, then binds to DNA, inhibiting DNA replication and causing cell death. | Chitosan is a bioactive polymer with many applications due to its antimicrobial properties, non-toxicity, ease of modification, and biodegradability. [74,75]. | |
Plant extracts | Unclear. | Limited investigation has been conducted on its effectiveness on surfaces of healthcare units or on medical devices including tympanostomy tubes [76,77]. | |
Selenium | Unclear. Possibly free radical generation [78]. | Antibacterial properties were also demonstrated by inhibiting the establishment of bacterial biofilms by P. aeruginosa and S. aureus. Selenium is a trace element in animal and human bodies [79,80]. | |
Acylase | Disruption of quorum sensing. | Acylase has been reported as a quorum quenching enzyme in Gram-negative bacteria [81]. | |
Chlorhexidine Chloroxylenol | Membrane disruption | Extensive applications in dentistry, such as gelatin for the treatment of periodontal infection, and in mouthwash [28,82,83]. | |
Octenidine | Perforation of the cytoplasmic membrane. Detachment of phospholipids from the cell membrane. | It has a wide spectrum of antimicrobial effectiveness against Gram-positive and Gram-negative bacteria and fungi [84]. | |
Cationic surfactants | (1) Membrane disruption after reaction with the cytoplasmic membrane (lipid or protein). (2) Leakage of intracellular low-molecular-weight substance. (3) Degradation of proteins and nucleic acids. (4) Wall perforation induced by autolytic enzymes. | Dioctadecyl dimethyl ammonium bromide (DODAB), hexadecyltrimethylammonium bromide (CTAB), and poly (diallyldimethyl) ammonium chloride (PDDA) are included [85]. | |
Nitric oxide | Disruption of cellular function and structure through interactions with microbial proteins, DNA, and metabolic enzymes. | NO reacts alone and with oxygen and reactive oxygen intermediates (e.g., superoxide and hydrogen peroxide) to form oxidative and nitrosative species, such as peroxynitrite RSNO, nitrogen dioxide, dinitrogen trioxide, and dinitrogen tetroxide, which exert nitrate-oxidative effects [86]. | |
Iodine | Perforate the cell wall, and disrupt protein and nucleic acid structure and synthesis [28,40]. | Commercialization is problematic because it is difficult to adjust the dissolution speed, and ensure product uniformity. Chemical burn and irritant contact dermatitis cannot be overlooked. | |
Chlorine | Destruction of cell walls and leakage of macromolecules by chlorination of substances in bacterial cell walls to produce chloro-compounds. [87]. | It has long been widely used for disinfecting drinking water. | |
Triclosan | Inhibition of fatty acid synthesis. | Triclosan acts as a biocide, targeting multiple cytoplasms and membranes at high concentrations [88,89,90]. | |
Furanones | Inhibition of quorum sensing. | Furanone compounds that inhibit bacterial quorum-sensing systems have been isolated from marine macro algae [91,92,93]. |
3. Review of Ag-HA Coated Antimicrobial Implants for Orthopedic and Spinal Surgery
3.1. Antimicrobial Efficacy of Antimicrobial Coatings and Materials
3.2. Safety of Antimicrobial Coatings and Materials
3.3. The Biocompatibility of the Ag-HA
3.4. Antimicrobial Implants for Clinical Use in Orthopaedic and Spinal Surgery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClelland, S.; Takemoto, R.C.; Lonner, B.S.; Andres, T.M.; Park, J.J.; Ricart-Hoffiz, P.A.; Bendo, J.A.; Goldstein, J.A.; Spivak, J.M.; Errico, T.J. Analysis of Postoperative Thoracolumbar Spine Infections in a Prospective Randomized Controlled Trial Using the Centers for Disease Control Surgical Site Infection Criteria. Int. J. Spine Surg. 2016, 10, 14. [Google Scholar] [CrossRef]
- Imajo, Y.; Taguchi, T.; Yone, K.; Okawa, A.; Otani, K.; Ogata, T.; Ozawa, H.; Shimada, Y.; Neo, M.; Iguchi, T. Japanese 2011 nationwide survey on complications from spine surgery. J. Orthop. Sci. 2015, 20, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Abe, H.; Higashikawa, A.; Tonosu, J.; Kuniya, T.; Nakajima, K.; Fujii, H.; Niwa, K.; Shinozaki, T.; Watanabe, K.; et al. Evidence-based Care Bundles for Preventing Surgical Site Infections in Spinal Instrumentation Surgery. Spine 2018, 43, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015, 10, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanò, C.L.; Tsuchiya, H.; Morelli, I.; Battaglia, A.G.; Drago, L. Antibacterial coating of implants: Are we missing something? Bone Jt. Res. 2019, 8, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef]
- Goodman, S.B.; Yao, Z.; Keeney, M.; Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013, 34, 3174–3183. [Google Scholar] [CrossRef] [Green Version]
- Gallo, J.; Holinka, M.; Moucha, C. Antibacterial Surface Treatment for Orthopaedic Implants. Int. J. Mol. Sci. 2014, 15, 13849–13880. [Google Scholar] [CrossRef] [Green Version]
- Noda, I.; Miyaji, F.; Ando, Y.; Miyamoto, H.; Shimazaki, T.; Yonekura, Y.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89, 456–465. [Google Scholar] [CrossRef]
- Ando, Y.; Miyamoto, H.; Noda, I.; Miyaji, F.; Shimazaki, T.; Yonekura, Y.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. Effect of Bacterial Media on the Evaluation of the Antibacterial Activity of a Biomaterial Containing Inorganic Antibacterial Reagents or Antibiotics. Biocontrol Sci. 2010, 15, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Eto, S.; Kawano, S.; Someya, S.; Miyamoto, H.; Sonohata, M.; Mawatari, M. First Clinical Experience with Thermal-Sprayed Silver Oxide-Containing Hydroxyapatite Coating Implant. J. Arthroplast. 2016, 31, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
- Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 237, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Tsimbouri, P.M.; Fisher, L.; Holloway, N.; Sjostrom, T.; Nobbs, A.H.; Meek, R.M.D.; Su, B.; Dalby, M.J. Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates. Sci. Rep. 2016, 6, 36857. [Google Scholar] [CrossRef] [PubMed]
- Decuzzi, P.; Ferrari, M. Modulating cellular adhesion through nanotopography. Biomaterials 2010, 31, 173–179. [Google Scholar] [CrossRef]
- Puckett, S.D.; Taylor, E.; Raimondo, T.; Webster, T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31, 706–713. [Google Scholar] [CrossRef]
- Kaper, H.J.; Busscher, H.J.; Norde, W. Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J. Biomater. Sci. Polym. Ed. 2003, 14, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.G.; Tosatti, S.; Wieland, M.; Textor, M.; Richards, R.G. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004, 25, 4135–4148. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Zhu, X.; Kang, E.T.; Neoh, K.G. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 2008, 29, 4751–4759. [Google Scholar] [CrossRef]
- Muszanska, A.K.; Rochford, E.T.; Gruszka, A.; Bastian, A.A.; Busscher, H.J.; Norde, W.; van der Mei, H.C.; Herrmann, A. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 2014, 15, 2019–2026. [Google Scholar] [CrossRef]
- Yu, K.; Lo, J.C.; Yan, M.; Yang, X.; Brooks, D.E.; Hancock, R.E.; Lange, D.; Kizhakkedathu, J.N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 2017, 116, 69–81. [Google Scholar] [CrossRef]
- Gao, G.; Lange, D.; Hilpert, K.; Kindrachuk, J.; Zou, Y.; Cheng, J.T.; Kazemzadeh-Narbat, M.; Yu, K.; Wang, R.; Straus, S.K.; et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011, 32, 3899–3909. [Google Scholar] [CrossRef] [PubMed]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, 8533–8554. [Google Scholar] [CrossRef] [PubMed]
- An, Y.H.; Bradley, J.; Powers, D.L.; Friedman, R.J. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J. Bone Jt. Surg. Br. 1997, 79, 816–819. [Google Scholar] [CrossRef]
- Arciola, C.R.; Bustanji, Y.; Conti, M.; Campoccia, D.; Baldassarri, L.; Samorì, B.; Montanaro, L. Staphylococcus epidermidis-fibronectin binding and its inhibition by heparin. Biomaterials 2003, 24, 3013–3019. [Google Scholar] [CrossRef]
- Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A Gen. 2007, 325, 105–111. [Google Scholar] [CrossRef]
- Fisher, L.; Ostovapour, S.; Kelly, P.; Whitehead, K.A.; Cooke, K.; Storgårds, E.; Verran, J. Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: The effect of soiling on antimicrobial activity. Biofouling 2014, 30, 911–919. [Google Scholar] [CrossRef]
- Dunnill, C.W.; Page, K.; Aiken, Z.A.; Noimark, S.; Hyett, G.; Kafizas, A.; Pratten, J.; Wilson, M.; Parkin, I.P. Nanoparticulate silver coated-titania thin films—Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. J. Photochem. Photobiol. A Chem. 2011, 220, 113–123. [Google Scholar] [CrossRef]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef]
- Sreekumari, K.R.; Sato, Y.; Kikuchi, Y. Antibacterial Metals—A Viable Solution for Bacterial Attachment and Microbiologically Influenced Corrosion. Mater. Trans. 2005, 46, 1636–1645. [Google Scholar] [CrossRef] [Green Version]
- Heidenau, F.; Mittelmeier, W.; Detsch, R.; Haenle, M.; Stenzel, F.; Ziegler, G.; Gollwitzer, H. A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med. 2005, 16, 883–888. [Google Scholar] [CrossRef]
- Hardes, J.; Streitburger, A.; Ahrens, H.; Nusselt, T.; Gebert, C.; Winkelmann, W.; Battmann, A.; Gosheger, G. The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines. Sarcoma 2007, 2007, 26539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J. Antimicrob. Chemother. 2007, 59, 587–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, A.; Pervez, S.; Javed, U.; Abro, M.I.; Nawaz, M.A.; Qader, S.A.U.; Aman, A. Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent. Int. J. Biol. Macromol. 2018, 115, 643–650. [Google Scholar] [CrossRef]
- Riaz, M.; Zia, R.; Ijaz, A.; Hussain, T.; Mohsin, M.; Malik, A. Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Montazerian, M.; Hamzehlou, S.; Kim, H.W.; Baino, F. Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomater. 2018, 81, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1391–1409. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, Y.; Xu, K.; Zhong, H.; Yang, Y.; Jin, S.; Yang, K.; Qi, X. Biological applications of copper-containing materials. Bioact Mater. 2021, 6, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006, 63, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 2006, 72, 4239–4244. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011, 7, 1928–1933. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, W.; Qiao, Y.; Jiang, X.; Liu, X.; Ding, C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012, 8, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Bellanger, X.; Billard, P.; Schneider, R.; Balan, L.; Merlin, C. Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria. J. Hazard. Mater. 2015, 283, 110–116. [Google Scholar] [CrossRef] [PubMed]
- MacOmber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Met. Integr. Biometal Sci. 2011, 3, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Eppakayala, J.; Mettu, M.R.; Pendyala, V.R.; Madireddy, J.R. Synthesis, structural and optical properties of Ni doped ZnO nanoparticle—A chemical approach. Mater. Today Proc. 2020, 26, 148–153. [Google Scholar] [CrossRef]
- Wilks, S.A.; Michels, H.; Keevil, C.W. The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445–454. [Google Scholar] [CrossRef]
- Naskar, A.; Lee, S.; Kim, K.S. Antibacterial potential of Ni-doped zinc oxide nanostructure: Comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Adv. 2020, 10, 1232–1242. [Google Scholar] [CrossRef] [Green Version]
- Farmand, F.; Ehdaie, A.; Roberts, C.K.; Sindhu, R.K. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environ. Res. 2005, 98, 33–39. [Google Scholar] [CrossRef]
- Naik, M.M.; Dubey, S.K. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. Saf. 2013, 98, 1–7. [Google Scholar] [CrossRef]
- Ranquet, C.; Ollagnier-de-Choudens, S.; Loiseau, L.; Barras, F.; Fontecave, M. Cobalt Stress in Escherichia coli: The effect on the iron-sulfur proteins. J. Biol. Chem. 2007, 282, 30442–30451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piçarra, S.; Lopes, E.; Almeida, P.L.; de Lencastre, H.; Aires-de-Sousa, M. Novel coating containing molybdenum oxide nanoparticles to reduce Staphylococcus aureus contamination on inanimate surfaces. PLoS ONE 2019, 14, e0213151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M.P. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next-generation of multifunctional nanoparticles. Mater. Today Commun. 2021, 26, 102156. [Google Scholar] [CrossRef]
- Kelson, A.B.; Carnevali, M.; Truong-Le, V. Gallium-based anti-infectives: Targeting microbial iron-uptake mechanisms. Curr. Opin. Pharmacol. 2013, 13, 707–716. [Google Scholar] [CrossRef]
- Jing, H.; Wu, X.; Liu, Y.; Lu, M.; Yang, K.; Yao, Z.; Ke, W. Antibacterial property of Ce-bearing stainless steels. J. Mater. Sci. 2007, 42, 5118–5122. [Google Scholar] [CrossRef]
- Verissimo, N.C.; Geilich, B.M.; Oliveira, H.G.; Caram, R.; Webster, T.J. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J. Biomed. Mater. Res. Part A 2015, 103, 3757–3763. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Z.; Cheng, J.; Wang, L. Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J. Wuhan Univ. Technol.-Mater. Sci Ed. 2008, 23, 475–479. [Google Scholar] [CrossRef]
- Fielding, G.A.; Roy, M.; Bandyopadhyay, A.; Bose, S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012, 8, 3144–3152. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.P.; Li, W.; Wang, C. Effect of the La alloying addition on the antibacterial capability of 316L stainless steel. Mater. Sci. Eng. C 2013, 33, 446–452. [Google Scholar] [CrossRef]
- Parisien, A.; Allain, B.; Zhang, J.; Mandeville, R.; Lan, C.Q. Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 2008, 104, 1–13. [Google Scholar] [CrossRef]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinänen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijnsg, F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crismaru, M.; Asri, L.A.; Loontjens, T.J.; Krom, B.P.; de Vries, J.; van der Mei, H.C.; Busscher, H.J. Survival of Adhering Staphylococci during Exposure to a Quaternary Ammonium Compound Evaluated by Using Atomic Force Microscopy Imaging. Antimicrob. Agents Chemother. 2011, 55, 5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiller, J.C.; Liao, C.J.; Lewis, K.; Klibanov, A.M. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA 2001, 98, 5981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, H.; Koepsel, R.R.; Matyjaszewski, K.; Russell, A.J. Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007, 28, 4870–4879. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.; Klibanov, A.M. Surpassing nature: Rational design of sterile-surface materials. Trends Biotechnol. 2005, 23, 343–348. [Google Scholar] [CrossRef]
- Fu, W.; Forster, T.; Mayer, O.; Curtin, J.J.; Lehman, S.M.; Donlan, R.M. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 2010, 54, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Tawil, N.; Sacher, E.; Mandeville, R.; Meunier, M. Strategies for the Immobilization of Bacteriophages on Gold Surfaces Monitored by Surface Plasmon Resonance and Surface Morphology. J. Phys. Chem. C 2013, 117, 6686–6691. [Google Scholar] [CrossRef]
- Hosseinidoust, Z.; van de Ven, T.G.M.; Tufenkji, N. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 2011, 27, 5472–5480. [Google Scholar] [CrossRef]
- Anany, H.; Chen, W.; Pelton, R.; Griffiths, M.W. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 2011, 77, 6379–6387. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Andrade, M.D.; Chata, G.; Rouholiman, D.; Liu, J.; Saltikov, C.; Chen, S. Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale 2017, 9, 994–1006. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A.; Luo, Z. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloids Surf. B Biointerfaces 2012, 100, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, J.; Jayakumar, R.; Mohandas, A.; Bhatnagar, I.; Kim, S.K. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels. Materials 2014, 7, 3946–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, S.N.; Gibson, D.; MacKay, W.G.; Reid, S.; Williams, C.; Birney, R. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf. Coat. Technol. 2017, 314, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Berlin/Heidelberg, Germany, 2020; pp. 457–489. [Google Scholar] [CrossRef]
- Kwieciński, J.; Eick, S.; Wójcik, K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int. J. Antimicrob. Agents 2009, 33, 343–347. [Google Scholar] [CrossRef]
- Ponce, A.G.; Roura, S.I.; del Valle, C.E.; Moreira, M.R. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biol. Technol. 2008, 49, 294–300. [Google Scholar] [CrossRef]
- Tran, P.L.; Hammond, A.A.; Mosley, T.; Cortez, J.; Gray, T.; Colmer-Hamood, J.A.; Reid, T.W. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl. Environ. Microbiol. 2009, 75, 3586–3592. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Valencia, C.; Lopez-Álvarez, M.; Cochón-Cores, B.; Pereiro, I.; Serra, J.; González, P. Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res. Part A 2013, 101, 853–861. [Google Scholar] [CrossRef]
- Tran, P.A.; Webster, T.J. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology 2013, 24, 155101. [Google Scholar] [CrossRef]
- Ivanova, K.; Fernandes, M.M.; Mendoza, E.; Tzanov, T. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl. Microbiol. Biotechnol. 2015, 99, 4373–4385. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 470–480. [Google Scholar] [CrossRef]
- Eltorai, A.E.M.; Haglin, J.; Perera, S.; Brea, B.A.; Ruttiman, R.; Garcia, D.R.; Born, C.T.; Daniels, A.H. Antimicrobial technology in orthopedic and spinal implants. World J. Orthop. 2016, 7, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Baier, G.; Cavallaro, A.; Friedemann, K.; Müller, B.; Glasser, G.; Vasilev, K.; Landfester, K. Enzymatic degradation of poly(L-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 131–139. [Google Scholar] [CrossRef]
- Carmona-Ribeiro, A.M.; de Melo Carrasco, L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013, 14, 9906–9946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, A.W.; Schoenfisch, M.H. Nitric Oxide Release Part, I.I. Therapeutic Applications. Chem. Soc. Rev. 2012, 41, 3742. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Pitts, B.; Stewart, P.S.; Camper, A.; Yoon, J. Comparison of the Antimicrobial Effects of Chlorine, Silver Ion, and Tobramycin on Biofilm. Antimicrob. Agents Chemother. 2008, 52, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, A.D. Whither triclosan? J. Antimicrob. Chemother. 2004, 53, 693–695. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.J.; Rutala, W.A. Self-disinfecting surfaces: Review of current methodologies and future prospects. Am. J. Infect. Control. 2013, 41, S31–S35. [Google Scholar] [CrossRef]
- Wang, Z.X.; Jiang, C.P.; Cao, Y.; Ding, Y.T. Systematic review and meta-analysis of triclosan-coated sutures for the prevention of surgical-site infection. Br. J. Surg. 2013, 100, 465–473. [Google Scholar] [CrossRef]
- Wu, H.; Song, Z.; Hentzer, M.; Andersen, J.B.; Molin, S.; Givskov, M.; Høiby, N. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 2004, 53, 1054–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilev, K.; Cook, J.; Griesser, H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 2009, 6, 553–567. [Google Scholar] [CrossRef]
- Baveja, J.K.; Willcox, M.D.P.; Hume, E.B.H.; Kumar, N.; Odell, R.; Poole-Warren, L.A. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials 2004, 25, 5003–5012. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Miyamoto, H.; Tsukamoto, M.; Eto, S.; Noda, I.; Shobuike, T.; Kobatake, T.; Sonohata, M.; Mawatari, M. Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation by Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo. BioMed Res. Int. 2016, 2016, 8070597. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, A.; Miyamoto, H.; Kii, S.; Kobatake, T.; Shobuike, T.; Noda, I.; Sonohata, M.; Mawatari, M. Time-dependent efficacy of combination of silver-containing hydroxyapatite coating and vancomycin on methicillin-resistant Staphylococcus aureus biofilm formation in vitro. BMC Res. Notes 2021, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- García-Mintegui, C.; Córdoba, L.C.; Buxadera-Palomero, J.; Marquina, A.; Jiménez-Piqué, E.; Ginebra, M.-P.; Cortina, J.L.; Pegueroles, M. Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioact. Mater. 2021, 6, 4430–4446. [Google Scholar] [CrossRef]
- Coelho, C.C.; Padrão, T.; Costa, L.; Pinto, M.T.; Costa, P.C.; Domingues, V.F.; Quadros, P.A.; Monteiro, F.J.; Sousa, S.R. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci. Rep. 2020, 10, 19098. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.A.; Carpenter, D.P.; Troxel, K.S.; Beenken, K.E.; Smeltzer, M.S.; Courtney, H.S.; Haggard, W.O. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm. Clin. Orthop. Relat. Res. 2015, 473, 2270–2282. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Lin, W.-T.; Tan, H.-L.; Duan, Z.-L.; Yue, B.; Ma, R.; He, G. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Int. J. Nanomed. 2014, 9, 1215. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Kawanobe, Y.; Ishii, K.; Konishi, T.; Mizumoto, M.; Kanzawa, N.; Matsumoto, M.; Aizawa, M. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Mater. Sci. Eng. C 2013, 33, 5008–5018. [Google Scholar] [CrossRef]
- Ketonis, C.; Parvizi, J.; Adams, C.S.; Shapiro, I.M.; Hickok, N.J. Topographic Features Retained after Antibiotic Modification of Ti Alloy Surfaces: Retention of Topography with Attachment of Antibiotics. Clin. Orthop. Relat. Res. 2009, 467, 1678–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, M.C.; Hoth, K.C.; Deforest, C.A.; Bowman, C.N.; Anseth, K.S. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin. Orthop Relat. Res. 2010, 468, 2081–2091. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, T.F.; Harris, L.G.; Mooney, R.A.; Wenke, J.C.; Riool, M.; Zaat, S.A.J.; Moter, A.; Schaer, T.P.; Khanna, N.; Kuehl, R.; et al. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J. Orthop. Res. 2019, 37, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, H.; Liu, J.; Qin, G.; Chen, D.; Zhang, E. In vivo antibacterial property of Ti-Cu sintered alloy implant. Mater. Sci. Eng. C 2019, 100, 38–47. [Google Scholar] [CrossRef]
- Shimazaki, T.; Miyamoto, H.; Ando, Y.; Noda, I.; Yonekura, Y.; Kawano, S.; Miyazaki, M.; Mawatari, M.; Hotokebuchi, T. In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 92, 386–389. [Google Scholar]
- Akiyama, T.; Miyamoto, H.; Yonekura, Y.; Tsukamoto, M.; Ando, Y.; Noda, I.; Sonohata, M.; Mawatari, M. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J. Orthop. Res. 2013, 31, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Kobatake, T.; Miyamoto, H.; Hashimoto, A.; Ueno, M.; Nakashima, T.; Murakami, T.; Noda, I.; Shobuike, T.; Sonohata, M.; Mawatari, M. Antibacterial Activity of Ag-Hydroxyapatite Coating Against Hematogenous Infection by Methicillin-Resistant Staphylococcus aureus in the Rat Femur. J. Orthop. Res. 2019, 37, 2655–2660. [Google Scholar] [CrossRef]
- Liu, D.; He, C.; Liu, Z.; Xu, W. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int. J. Nanomed. 2017, 12, 5461–5471. [Google Scholar] [CrossRef] [Green Version]
- Stavrakis, A.I.; Zhu, S.; Loftin, A.H.; Weixian, X.; Niska, J.; Hegde, V.; Segura, T.; Bernthal, N.M. Controlled Release of Vancomycin and Tigecycline from an Orthopaedic Implant Coating Prevents Staphylococcus aureus Infection in an Open Fracture Animal Model. Biomed. Res. Int. 2019, 2019, 1638508. [Google Scholar] [CrossRef] [Green Version]
- Funao, H.; Nagai, S.; Sasaki, A.; Hoshikawa, T.; Tsuji, T.; Okada, Y.; Koyasu, S.; Toyama, Y.; Nakamura, M.; Aizawa, M.; et al. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci. Rep. 2016, 6, 23238. [Google Scholar] [CrossRef] [Green Version]
- Ishihama, H.; Ishii, K.; Nagai, S.; Kakinuma, H.; Sasaki, A.; Yoshioka, K.; Kuramoto, T.; Shiono, Y.; Funao, H.; Isogai, N.; et al. An antibacterial coated polymer prevents biofilm formation and implant-associated infection. Sci. Rep. 2021, 11, 3602. [Google Scholar] [CrossRef] [PubMed]
- Coccini, T.; Manzo, L.; Bellotti, V.; De Simone, U. Assessment of Cellular Responses after Short- and Long-Term Exposure to Silver Nanoparticles in Human Neuroblastoma (SH-SY5Y) and Astrocytoma (D384) Cells. Sci. World J. 2014, 2014, 259765. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, A.; Sonohata, M.; Kitajima, M.; Kawano, S.; Eto, S.; Mawatari, M. First experience with a thermal-sprayed silver oxide-containing hydroxyapatite coating implant in two-stage total hip arthroplasty for the treatment of septic arthritis with hip osteoarthritis: A case report. Int. J. Surg. Case Rep. 2020, 77, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Ketonis, C.; Barr, S.; Adams, C.S.; Shapiro, I.M.; Parvizi, J.; Hickok, N.J. Vancomycin bonded to bone grafts prevents bacterial colonization. Antimicrob. Agents Chemother. 2011, 55, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoci, V.; King, S.B.; Jose, B.; Parvizi, J.; Zeiger, A.R.; Wickstrom, E.; Freeman, T.A.; Composto, R.J.; Ducheyne, P.; Shapiro, I.M.; et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 2007, 25, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Ketonis, C.; Adams, C.S.; Barr, S.; Aiyer, A.; Shapiro, I.M.; Parvizi, J.; Hickok, N.J. Antibiotic Modification of Native Grafts: Improving Upon Nature’s Scaffolds. Tissue Eng. Part A 2010, 16, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, H.; Shirai, T.; Nishida, H.; Murakami, H.; Kabata, T.; Yamamoto, N.; Watanabe, K.; Nakase, J. Innovative antimicrobial coating of titanium implants with iodine. J. Orthop. Sci. 2012, 17, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Tsuchiya, H.; Nishida, H.; Yamamoto, N.; Watanabe, K.; Nakase, J.; Terauchi, R.; Arai, Y.; Fujiwara, H.; Kubo, T. Antimicrobial megaprostheses supported with iodine. J. Biomater. Appl. 2014, 29, 617–623. [Google Scholar] [CrossRef]
- Fuchs, T.; Stange, R.; Schmidmaier, G.; Raschke, M.J. The use of gentamicin-coated nails in the tibia: Preliminary results of a prospective study. Arch. Orthop. Trauma Surg. 2011, 131, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Zagra, L.; Gallazzi, E.; Romanò, D.; Scarponi, S.; Romanò, C. Two-stage cementless hip revision for peri-prosthetic infection with an antibacterial hydrogel coating: Results of a comparative series. Int. Orthop. 2019, 43, 111–115. [Google Scholar] [CrossRef]
- Wan, A.T.; Conyers, R.A.; Coombs, C.J.; Masterton, J.P. Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin. Chem. 1991, 37, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, M.; Miyamoto, H.; Ando, Y.; Noda, I.; Eto, S.; Akiyama, T.; Yonekura, Y.; Sonohata, M.; Mawatari, M. Acute and Subacute ToxicityIn Vivoof Thermal-Sprayed Silver Containing Hydroxyapatite Coating in Rat Tibia. BioMed Res. Int. 2014, 2014, 902343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, C.; Proctor, C.; Kabler, P. Bactericidal effect of low concentrations of silver. J. Am. Water Works Assoc. 1962, 54, 208–216. [Google Scholar] [CrossRef]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10 (Suppl. S2), S96–S101. [Google Scholar] [PubMed] [Green Version]
- Shu, R.; McMullen, R.; Baumann, M.J.; McCabe, L.R. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J. Biomed. Mater. Res. Part A 2003, 67A, 1196–1204. [Google Scholar] [CrossRef]
- Mello, A.; Hong, Z.; Rossi, A.M.; Luan, L.; Farina, M.; Querido, W.; Eon, J.; Terra, J.; Balasundaram, G.; Webster, T.; et al. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed. Mater. 2007, 2, 67–77. [Google Scholar] [CrossRef]
- Smith, I.O.; McCabe, L.R.; Baumann, M.J. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int. J. Nanomed. 2006, 1, 189–194. [Google Scholar] [CrossRef]
- Lim, J.Y.; Shaughnessy, M.C.; Zhou, Z.; Noh, H.; Vogler, E.A.; Donahue, H.J. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008, 29, 1776–1784. [Google Scholar] [CrossRef]
- Lai, H.-C.; Zhuang, L.-F.; Liu, X.; Wieland, M.; Zhang, Z.-Y.; Zhang, Z.-Y. The influence of surface energy on early adherent events of osteoblast on titanium substrates. J. Biomed. Mater. Res. Part A 2010, 93, 289–296. [Google Scholar] [CrossRef]
- Eto, S.; Miyamoto, H.; Shobuike, T.; Noda, I.; Akiyama, T.; Tsukamoto, M.; Ueno, M.; Someya, S.; Kawano, S.; Sonohata, M.; et al. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur. J. Orthop. Res. 2015, 33, 1391–1397. [Google Scholar] [CrossRef]
- Søballe, K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop. Scand. Suppl. 1993, 255, 1–58. [Google Scholar] [CrossRef]
- Chang, B.-S.; Lee, I.C.K.F.C.-K.; Hong, K.-S.; Youn, H.-J.; Ryu, H.-S.; Chung, S.-S.; Park, K.-W. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000, 21, 1291–1298. [Google Scholar] [CrossRef]
- Geesink, R.G.; de Groot, K.; Klein, C.P. Chemical implant fixation using hydroxyl-apatite coatings. The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin. Orthop. Relat. Res. 1987, 225, 147–170. [Google Scholar] [CrossRef]
- Yonekura, Y.; Miyamoto, H.; Shimazaki, T.; Ando, Y.; Noda, I.; Mawatari, M.; Hotokebuchi, T. Osteoconductivity of thermal-sprayed silver-containing hydroxyapatite coating in the rat tibia. J. Bone Jt. Surg. Br. 2011, 93, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Second International Consensus Meeting on Musculoskeletal Infection 2018. Available online: https://icmphilly.com/general-assembly/ (accessed on 29 March 2022).
- Hardes, J.; Von Eiff, C.; Streitbuerger, A.; Balke, M.; Budny, T.; Henrichs, M.P.; Hauschild, G.; Ahrens, H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol. 2010, 101, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hardes, J.; Henrichs, M.P.; Hauschild, G.; Nottrott, M.; Guder, W.; Streitbuerger, A. Silver-Coated Megaprosthesis of the Proximal Tibia in Patients with Sarcoma. J. Arthroplast. 2017, 32, 2208–2213. [Google Scholar] [CrossRef] [Green Version]
- Hussmann, B.; Johann, I.; Kauther, M.D.; Landgraeber, S.; Jäger, M.; Lendemans, S. Measurement of the Silver Ion Concentration in Wound Fluids after Implantation of Silver-Coated Megaprostheses: Correlation with the Clinical Outcome. Biomed. Res. Int. 2013, 2013, 763096. [Google Scholar] [CrossRef] [Green Version]
- Wilding, C.P.; Cooper, G.A.; Freeman, A.K.; Parry, M.C.; Jeys, L. Can a Silver-Coated Arthrodesis Implant Provide a Viable Alternative to Above Knee Amputation in the Unsalvageable, Infected Total Knee Arthroplasty? J. Arthroplast. 2016, 31, 2542–2547. [Google Scholar] [CrossRef]
- Piccioli, A.; Donati, F.; Giacomo, G.D.; Ziranu, A.; Careri, S.; Spinelli, M.S.; Giannini, S.; Giannicola, G.; Perisano, C.; Maccauro, G. Infective complications in tumour endoprostheses implanted after pathological fracture of the limbs. Injury 2016, 47, S22–S28. [Google Scholar] [CrossRef]
- Donati, F.; Di Giacomo, G.; D’Adamio, S.; Ziranu, A.; Careri, S.; Rosa, M.; Maccauro, G. Silver-Coated Hip Megaprosthesis in Oncological Limb Savage Surgery. Biomed. Res. Int. 2016, 2016, 9079041. [Google Scholar] [CrossRef] [Green Version]
- Zajonz, D.; Birke, U.; Ghanem, M.; Prietzel, T.; Josten, C.; Roth, A.; Fakler, J.K.M. Silver-coated modular Megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss—A pilot study of 34 patients. BMC Musculoskelet. Disord. 2017, 18, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmolders, J.; Koob, S.; Schepers, P.; Pennekamp, P.H.; Gravius, S.; Wirtz, D.C.; Placzek, R.; Strauss, A.C. Lower limb reconstruction in tumor patients using modular silver-coated megaprostheses with regard to perimegaprosthetic joint infection: A case series, including 100 patients and review of the literature. Arch. Orthop. Trauma Surg. 2017, 137, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Trovarelli, G.; Cappellari, A.; Angelini, A.; Pala, E.; Ruggieri, P. What Is the Survival and Function of Modular Reverse Total Shoulder Prostheses in Patients Undergoing Tumor Resections in Whom an Innervated Deltoid Muscle Can Be Preserved? Clin. Orthop. Relat. Res. 2019, 477, 2495–2507. [Google Scholar] [CrossRef]
- Wafa, H.; Grimer, R.J.; Reddy, K.; Jeys, L.; Abudu, A.; Carter, S.R.; Tillman, R.M. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: Case-control study. Bone Jt. J. 2015, 97-b, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Medellin, M.R.; Fujiwara, T.; Clark, R.; Stevenson, J.D.; Parry, M.; Jeys, L. Mechanisms of failure and survival of total femoral endoprosthetic replacements. Bone Jt. J. 2019, 101-b, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.C.; Laitinen, M.K.; Albergo, J.I.; Gaston, C.L.; Stevenson, J.D.; Grimer, R.J.; Jeys, L.M. Silver-coated (Agluna®) tumour prostheses can be a protective factor against infection in high risk failure patients. Eur. J. Surg. Oncol. 2019, 45, 704–710. [Google Scholar] [CrossRef]
- Scoccianti, G.; Frenos, F.; Beltrami, G.; Campanacci, D.A.; Capanna, R. Levels of silver ions in body fluids and clinical results in silver-coated megaprostheses after tumour, trauma or failed arthroplasty. Injury 2016, 47, S11–S16. [Google Scholar] [CrossRef]
- Sambri, A.; Zucchini, R.; Giannini, C.; Zamparini, E.; Viale, P.; Donati, D.M.; De Paolis, M. Silver-coated (PorAg®) endoprosthesis can be protective against reinfection in the treatment of tumor prostheses infection. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1345–1353. [Google Scholar] [CrossRef]
- Kawano, S.; Sonohata, M.; Eto, S.; Kitajima, M.; Mawatari, M. Bone ongrowth of a cementless silver oxide-containing hydroxyapatite-coated antibacterial acetabular socket. J. Orthop. Sci. 2019, 24, 658–662. [Google Scholar] [CrossRef]
- Seçinti, K.D.; Attar, A.; Seçinti, E. Clinical Trial Using A Silver-Coated Screw-Rod System and One-Year Follow-Up of The First 50 Patient. J. Nerv. Sys. Surg. 2016, 6, 10–21. [Google Scholar]
- Demura, S.; Murakami, H.; Shirai, T.; Kato, S.; Yoshioka, K.; Ota, T.; Ishii, T.; Igarashi, T.; Tsuchiya, H. Surgical treatment for pyogenic vertebral osteomyelitis using iodine-supported spinal instruments: Initial case series of 14 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Murakami, H.; Demura, S.; Kato, S.; Yoshioka, K.; Shinmura, K.; Yokogawa, N.; Ishii, T.; Fang, X.; Shirai, T.; et al. Surgical site infection after total en bloc spondylectomy: Risk factors and the preventive new technology. Spine J. 2015, 15, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabata, T.; Maeda, T.; Kajino, Y.; Hasegawa, K.; Inoue, D.; Yamamoto, T.; Takagi, T.; Ohmori, T.; Tsuchiya, H. Iodine-Supported Hip Implants: Short Term Clinical Results. Biomed. Res. Int. 2015, 2015, 368124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tada, K.; Kajino, Y.; Higuchi, T.; Abe, K.; Aiba, H.; et al. Risk factors for surgical site infection after malignant bone tumor resection and reconstruction. BMC Cancer 2019, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Metsemakers, W.J.; Reul, M.; Nijs, S. The use of gentamicin-coated nails in complex open tibia fracture and revision cases: A retrospective analysis of a single centre case series and review of the literature. Injury 2015, 46, 2433–2437. [Google Scholar] [CrossRef]
- Pitarresi, G.; Palumbo, F.S.; Calascibetta, F.; Fiorica, C.; Di Stefano, M.; Giammona, G. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. Int. J. Pharm. 2013, 449, 84–94. [Google Scholar] [CrossRef]
- Zoccali, C.; Scoccianti, G.; Biagini, R.; Daolio, P.A.; Giardina, F.L.; Campanacci, D.A. Antibacterial hydrogel coating in joint mega-prosthesis: Results of a comparative series. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1647–1655. [Google Scholar] [CrossRef]
- Savvidou, O.D.; Kaspiris, A.; Trikoupis, I.; Kakouratos, G.; Goumenos, S.; Melissaridou, D.; Papagelopoulos, P.J. Efficacy of antimicrobial coated orthopaedic implants on the prevention of periprosthetic infections: A systematic review and meta-analysis. J. Bone Jt. Infect. 2020, 5, 212–222. [Google Scholar] [CrossRef]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef]
Antimicrobial Material | Trademark (Company, Nationality) | Author | Regulatory Level | Coating Technology | Concentrations/Loading | Availability (Application) | Indications |
---|---|---|---|---|---|---|---|
Silver | |||||||
Mutars® (Implantcast, Germany) | Hardes [31,136,137], Glehr [6], Hussmann [138], Wilding [139], Piccioli [140], Donati [141], Zajonz [142], Schmolders [143], Trovarelli [144] | Market | Galvanic deposition of elementary silver on the gold layer | 0.33–2.89 g | Upper and lower extremities (megaprosthesis) | Tumor | |
Agluna®, METS® (Stanmore Implants–Accentus Medical Ltd.,Oxford, UK) | Wafa [145], Medellin [146], Parry [147] | Market | Anodization of the titanium alloy, followed by absorption of silver from an aqueous solution | 6 mg (maximum) | Upper and lower extremities (megaprosthesis) | Tumor | |
PorAg®, Megasystem C ® (Waldemar Link, Hamburg, Germany) | Scoccianti [148], Sambri [149] | Market | Silver plasma immersion ion implantation | Not specified | Upper and lower extremities (megaprosthesis) | Tumor | |
AG-PROTEX® Hip system (Kyocera, Kyoto, Japan) | Eto [11], Hashimoto [121], Kawano [150], | Market | Ag-HA was thermal sprayed as a coating material to fabricate an Ag-HA-coated implant | 1.9 to 2.9-mg (hip system), | Lower extremities (hip prosthesis) | Hip osteoarthritis | |
Resitage® (Kyocera, Kyoto, Japan) | This report | Market | Ag-HA was thermal sprayed as a coating material to fabricate an Ag-HA-coated implant | 0.1 to 0.8-mg (per cage) | Spine (lumbar interbody cage) | Lumar degenerative disease | |
Not applicable (Turkey) | Seçinti [151] | Clinical | nanoparticle silver-coated implant | Not specified | Spine (pedicle screw and rod) | Spinal disease | |
Iodine | |||||||
Not applicable (Japan) | Tsuchuya [117], Shirai [118], Demura [152], Hayashi [153], Kabata [154], Miwa [155] | Clinical | Povidone-iodine electrolyte-based process | 10–12 μg/cm2 | Upper and lower extremities/spine/ pelvis (prosthesis, nail, screw, plate) | Various cases (tumor, fracture, infection) | |
Gentamicin poly(D, L-lactide) matrix | |||||||
UTN PROtect | Fuchs [119] | Market | Gentamicin poly (D, Llactide) with dip coating process | 10–50 mg (per implant) | Lower extremities (Tibia nail) | Tibia fracture | |
Expert Tibial Nail (ETN) PROtect | Metsemakers [156] | Market | Gentamicin poly (D, Llactide) with dip coating process | 10–50 mg (per implant) | Lower extremities (Tibia nail) | Tibia fracture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimoto, T.; Hirata, H.; Eto, S.; Hashimoto, A.; Kii, S.; Kobayashi, T.; Tsukamoto, M.; Yoshihara, T.; Toda, Y.; Mawatari, M. Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina 2022, 58, 519. https://doi.org/10.3390/medicina58040519
Morimoto T, Hirata H, Eto S, Hashimoto A, Kii S, Kobayashi T, Tsukamoto M, Yoshihara T, Toda Y, Mawatari M. Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina. 2022; 58(4):519. https://doi.org/10.3390/medicina58040519
Chicago/Turabian StyleMorimoto, Tadatsugu, Hirohito Hirata, Shuichi Eto, Akira Hashimoto, Sakumo Kii, Takaomi Kobayashi, Masatsugu Tsukamoto, Tomohito Yoshihara, Yu Toda, and Masaaki Mawatari. 2022. "Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery" Medicina 58, no. 4: 519. https://doi.org/10.3390/medicina58040519
APA StyleMorimoto, T., Hirata, H., Eto, S., Hashimoto, A., Kii, S., Kobayashi, T., Tsukamoto, M., Yoshihara, T., Toda, Y., & Mawatari, M. (2022). Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina, 58(4), 519. https://doi.org/10.3390/medicina58040519