A Bibliometric Analysis (2010–2020) of the Dental Scientific Literature on Chemo-Mechanical Methods of Caries Removal Using Carisolv and BRIX3000
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Keyword Analysis
3.2. Analysis of “Co-Authorship” in Terms of Number of Documents, Universities and Countries
3.3. Co-Citation Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhamija, N.; Pundir, P. A Review on Agents for Chemo-mechanical Caries Removal. Sch. J. Dent. Sci. SJDS 2016, 3, 264–268. [Google Scholar]
- Hamama, H.; Yiu, C.; Burrow, M. Current update of chemomechanical caries removal methods. Aust. Dent. J. 2014, 59, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Watson, T.F.; Kidd, E.A.M. Dentine caries excavation: A review of current clinical techniques. Br. Dent. J. 2000, 188, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Capi, C.L.; Cocco, F.; Cagetti, M.G.; Lingström, P.; Almhöjd, U.; Campus, G. Comparison of Carisolv system vs traditional rotating instruments for caries removal in the primary dentition: A systematic review and meta-analysis. Acta Odontol. Scand. 2015, 73, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.; Coelho, A.; Lima, R.; Amaro, I.; Paula, A.; Marto, C.M.; Sousa, J.; Spagnuolo, G.; Ferreira, M.M.; Carrilho, E. Efficacy and Patient’s Acceptance of Alternative Methods for Caries Removal—A Systematic Review. J. Clin. Med. 2020, 9, 3407. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Jouhar, R. Dissemination of Aerosol and Splatter in Clinical Environment during Cavity Preparation: An In Vitro Study. Int. J. Environ. Res. Public Health 2021, 18, 3773. [Google Scholar] [CrossRef]
- Carisolv Technichal Sheet. Available online: https://www.ddgroup.com/globalassets/news/pdfs/carisolv-technical-sheet.pdf (accessed on 20 January 2022).
- Erhardt, M.C.G.; Amaral, C.M.; De Castro, A.K.B.B.; Ambrosano, G.M.B.; Pimenta, L.A.F. In vitro influence of Carisolv on shear bond strength of dentin bonding agents. Quintessence Int. 2004, 35, 801–807. [Google Scholar]
- BRIX3000 Product Data-Sheet. Available online: https://brix-dentist.com/wp-content/uploads/2018/07/BRIX3000-Data-Sheet.pdf (accessed on 20 January 2022).
- Mahdi, M.; Ismail, M.; Haidar, A.; Al Haidar, M.J. Evaluation of the Efficacy of Caries Removal Using Papain Gel (Brix 3000) and Smart Preparation Bur (in vivo Comparative Study). J. Pharm. Sci. Res. 2019, 11, 444–449. [Google Scholar]
- Dobboletta, M. Dental gel Composition of Papain for the Atraumatic Treatment of Caries and Method of Preparing Same. International: World Intellectual Property Organization International Bureau; WO 2015/179463 Al. 26 November 2015. Available online: https://patentimages.storage.googleapis.com/c1/95/98/3d1ce5d626d4b1/WO2015179463A1.pdf (accessed on 20 April 2022).
- Santos, T.M.L.; Bresciani, E.; Matos, F.D.S.; Camargo, S.E.A.; Hidalgo, A.P.T.; Rivera, L.M.L.; Bernardino, D.M.; Paranhos, L.R. Comparison between conventional and chemomechanical approaches for the removal of carious dentin: An in vitro study. Sci. Rep. 2020, 10, 8127. [Google Scholar] [CrossRef]
- Guedes, F.R.; Bonvicini, J.F.S.; de Souza, G.L.; da Silva, W.H.T.; Moura, C.C.G.; Paranhos, L.R.; Turrioni, A.P. Cytotoxicity and dentin composition alterations promoted by different chemomechanical caries removal agents: A preliminary in vitro study. J. Clin. Exp. Dent. 2021, 13, 826–834. [Google Scholar] [CrossRef]
- Peric, T.; Markovic, D. In vitro effectiveness of a chemo-mechanical method for caries removal. Eur. J. Paediatr. Dent. 2007, 8, 61–67. [Google Scholar] [PubMed]
- Çehreli, Z.C.; Yazici, A.; Akca, T.; Özgünaltay, G. A morphological and micro-tensile bond strength evaluation of a single-bottle adhesive to caries-affected human dentine after four different caries removal techniques. J. Dent. 2003, 31, 429–435. [Google Scholar] [CrossRef]
- Hamama, H.H.H.; Yiu, C.K.Y.; Burrow, M.F. Effect of chemomechanical caries removal on bonding of self-etching adhesives to caries-affected dentin. J. Adhes. Dent. 2014, 16, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Cecchin, D.; Farina, A.P.; Orlando, F.; Brusco, E.H.C.; Carlini-Júnior, B. Effect of carisolv and papacárie on the resin-dentin bond strength in sound and caries-affected primary molars. Braz. J. Oral Sci. 2010, 9, 25–29. [Google Scholar] [CrossRef]
- Maru, V.P.; Shakuntala, B.S.; Dharma, N. Evaluation of Marginal Leakage and Shear Bond Strength of Bonded Restorations in Primary Teeth after Caries Removal by Conventional and Chemomechanical Techniques. Int. Sch. Res. Not. 2014, 2014, 854816. [Google Scholar] [CrossRef]
- Gil-Montoya, J.A.; Mateos-Palacios, R.; Bravo, M.; Gonzalez-Moles, M.A.; Pulgar, R. Atraumatic restorative treatment and Carisolv use for root caries in the elderly: 2-year follow-up randomized clinical trial. Clin. Oral Investig. 2014, 18, 1089–1095. [Google Scholar] [CrossRef]
- Eden, E.; Frencken, J.; Gao, S.; Horst, J.A.; Innes, N. Managing dental caries against the backdrop of COVID-19: Approaches to reduce aerosol generation. Br. Dent. J. 2020, 229, 411–416. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Jouhar, R.; Ahmed, N.; Adnan, S.; Aftab, M.; Zafar, M.S.; Khurshid, Z. Fear and Practice Modifications among Dentists to Combat Novel Coronavirus Disease (COVID-19) Outbreak. Int. J. Environ. Res. Public Health 2020, 17, 2821. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.17.pdf (accessed on 20 January 2022).
- Kusumasari, C.; Abdou, A.; Tichy, A.; Hatayama, T.; Hosaka, K.; Foxton, R.M.; Wada, T.; Sumi, Y.; Nakajima, M.; Tagami, J. Effect of smear layer deproteinization with chemo-mechanical caries removal agents on sealing performances of self-etch adhesives. J. Dent. 2020, 94, 103300. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.-M.; Yu, S.-L.; Wen, Q. Morphological and microtensile bond strength evaluation of three adhesive systems to caries-affected human dentine with chemomechanical caries removal. J. Dent. 2011, 39, 332–339. [Google Scholar] [CrossRef]
- Kancharla, A.K.; Akilandan, S.; Prasad, S.S.V.; Srinivas, B.; Nandigam, A.R.; Deepthi, P.D.; Perika, S.B.; Chenjeri, R. Evaluation of Effect of Carisolv, EDTA-S and EDTA on Periodontally Diseased Root Surfaces: An In-vitro Scanning Electron Microscopic Study. J. Clin. Diagn. Res. 2019, 13, ZC25–ZC31. [Google Scholar] [CrossRef]
- Moyaho-Bernal, M.D.L.A.; Badillo-Estévez, B.E.; la Fuente, E.L.S.-D.; González-Torres, M.; Teutle-Coyotecatl, B.; de Celís-Quintana, G.N.R.; Carrasco-Gutiérrez, R.; Vaillard-Jiménez, E.; Lezama-Flores, G. The roughness of deciduous dentin surface and shear bond strength of glass ionomers in the treatment with four minimally invasive techniques. RSC Adv. 2019, 9, 32197–32204. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Sirinkaraarslan, E.; Yegin, Z.; Cebe, M.A.; Tosun, G. Effect of caries removal techniques on the bond strength of adhesives to caries-affected primary dentin in vitro. Eur. J. Paediatr. Dent. 2013, 14, 209–214. [Google Scholar] [PubMed]
- Neves, A.D.A.; Coutinho, E.; Cardoso, M.V.; de Munck, J.; Van Meerbeek, B. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques. Dent. Mater. 2011, 27, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Gianini, R.J.; Amaral, F.L.B.D.; Flório, F.M.; Basting, R.T. Microtensile bond strength of etch-and-rinse and self-etch adhesive systems to demineralized dentin after the use of a papain-based chemomechanical method. Am. J. Dent. 2010, 23, 23–28. [Google Scholar]
- Hamama, H.; Yiu, C.; Burrow, M. Effect of chemomechanical caries removal on bonding of resin-modified glass ionomer cement adhesives to caries-affected dentine. Aust. Dent. J. 2015, 60, 190–199. [Google Scholar] [CrossRef]
- Hamama, H.; Yiu, C.; Burrow, M. Effect of silver diamine fluoride and potassium iodide on residual bacteria in dentinal tubules. Aust. Dent. J. 2015, 60, 80–87. [Google Scholar] [CrossRef]
- Cebe, M.A.; Ozturk, B.; Karaarslan, E. Effect of caries removal techniques on bond strength to caries affected dentin on gingival wall: AFM observation of dentinal surface. J. Adhes. Sci. Technol. 2015, 30, 157–170. [Google Scholar] [CrossRef]
- Aggarwal, V.; Singla, M.; Yadav, S.; Yadav, H. The effect of caries excavation methods on the bond strength of etch-and-rinse and self-etch adhesives to caries affected dentine. Aust. Dent. J. 2013, 58, 454–460. [Google Scholar] [CrossRef]
- Karaarslan, E.S.; Yildiz, E.; Cebe, M.; Yegin, Z.; Ozturk, B. Evaluation of micro-tensile bond strength of caries-affected human dentine after three different caries removal techniques. J. Dent. 2012, 40, 793–801. [Google Scholar] [CrossRef]
- Banerjee, A.; Kellow, S.; Mannocci, F.; Cook, R.; Watson, T. An in vitro evaluation of microtensile bond strengths of two adhesive bonding agents to residual dentine after caries removal using three excavation techniques. J. Dent. 2010, 38, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Varun, R.P.; Chamarthi, V.R.; Annamalai, S. Microtensile bond strength of GIC and RMGIC restored to carious teeth treated with Carisolv and Papacarie-an in vitro study. J. Evol. Med. Dent. Sci. 2018, 7, 1488–1492. [Google Scholar] [CrossRef]
- Goyal, P.A.; Kumari, R.; Kannan, V.P.; Madhu, S. Efficacy and Tolerance of Papain Gel with Conventional Drilling Method: A Clinico-Microbiological Study. J. Clin. Pediatr. Dent. 2015, 39, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Hamama, H.; Yiu, C.K.Y.; Burrow, M.F.; King, N.M. Systematic Review and Meta-Analysis of Randomized Clinical Trials on Chemomechanical Caries Removal. Oper. Dent. 2015, 40, E167–E179. [Google Scholar] [CrossRef] [PubMed]
- Hamama, H.H.; Yiu, C.K.; Burrow, M.F. Viability of Intratubular Bacteria after Chemomechanical Caries Removal. J. Endod. 2014, 40, 1972–1976. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, R.; Scougall-Vilchis, R.J.; Contreras-Bulnes, R.; Kanda, Y.; Nakajima, H.; Sakagami, H. Cytotoxicity and pro-inflammatory action of chemo-mechanical caries-removal agents against oral cells. In Vivo 2014, 28, 549–556. [Google Scholar]
- Viral, P.M.; Nagarathna, C.; Shakuntala, B.S. Chemomechanical Caries Removal in Primary Molars: Evaluation of Marginal Leakage and Shear Bond Strength in Bonded Restorations”—An in Vitro Study. J. Clin. Pediatr. Dent. 2013, 37, 269–274. [Google Scholar] [CrossRef]
- Hamama, H.H.; Yiu, C.K.Y.; Burrow, M.F.; King, N.M. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust. Dent. J. 2013, 58, 283–292. [Google Scholar] [CrossRef]
- El-Tekeya, M.; El-Habashy, L.; Mokhles, N.; El-Kimary, E. Effectiveness of 2 chemomechanical caries removal methods on residual bacteria in dentin of primary teeth. Pediatr. Dent. 2012, 34, 325–330. [Google Scholar]
- Ganapathi, A.; Prabakar, J. Knowledge, Attitude, Practice About Chemo Mechanical Caries Removal Method in Dental Caries Among Dentist in Chennai City- A Cross-Sectional Study. Biosci. Biotechnol. Res. Commun. 2020, 13, 410–418. [Google Scholar] [CrossRef]
- AlHumaid, J. Efficacy and efficiency of papacarie versus conventional method in caries removal in primary teeth: An SEM study. Saudi, J. Med. Med Sci. 2020, 8, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Maru, V.P.; Padawe, D.; Tripathi, V.P.; Takate, V.; Dighe, K.; Dalvi, S.V. Reduction in Bacterial Loading using Papacarie and Carisolv as an Irrigant in Pulpectomized Primary Molars—A Preliminary Report. J. Clin. Pediatr. Dent. 2020, 44, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Avunduk, A.T.E.; Bağlar, S. Evaluation of microleakage in class v cavities prepared by different caries removal methods. Microsc. Res. Tech. 2019, 82, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.M.; Al Nesser, S.F.; Bshara, N.G.; AlMidani, A.N.; Comisi, J.C. Comparing the efficacies of two chemo-mechanical caries removal agents (2.25% sodium hypochlorite gel and brix 3000), in caries removal and patient cooperation: A randomized controlled clinical trial. J. Dent. 2020, 93, 103280. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ma, Y.-Z.; Jia, J.; Xin, B.-C.; Wang, D.-S.; Sun, D.-G.; Wang, L.-X. Removal of the root canal smear layer using Carisolv III and sodium hypochlorite. Medicine 2020, 99, e20372. [Google Scholar] [CrossRef]
- Yamada, Y.; Hossain, M.; Kimura, Y.; Masuda, Y.; Jayawardena, J.A.; Nasu, Y. Removal of Organic Debris from Occlusal Fissures: Advantage of Carisolv System over Sodium Hypochlorite. J. Clin. Pediatr. Dent. 2010, 35, 75–79. [Google Scholar] [CrossRef]
- Thomas, A.R.; Nagraj, S.K.; Mani, R.; Haribabu, R. Comparative evaluation of the efficiency of caries removal using various minimally invasive techniques with conventional rotary instruments using cone beam computed tomography: An in vitro study. J. Int. Oral Health 2020, 12, 253–259. [Google Scholar] [CrossRef]
- Neves, A.A.; Coutinho, E.; De Munck, J.; Lambrechts, P.; Van Meerbeek, B. Does DIAGNOdent provide a reliable caries-removal endpoint? J. Dent. 2011, 39, 351–360. [Google Scholar] [CrossRef]
- Katirci, G.; Ermis, R.B. Microindentation hardness and calcium/phosphorus ratio of dentin following excavation of dental caries lesions with different techniques. SpringerPlus 2016, 5, 1641. [Google Scholar] [CrossRef]
- Neves, A.; Coutinho, E.; De Munck, J.; Van Meerbeek, B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: A micro-CT investigation. J. Dent. 2011, 39, 154–162. [Google Scholar] [CrossRef]
- Zhang, X.; Tu, R.; Yin, W.; Zhou, X.; Li, X.; Hu, D. Micro-computerized tomography assessment of fluorescence aided caries excavation (FACE) technology: Comparison with three other caries removal techniques. Aust. Dent. J. 2013, 58, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Galuscan, A.; Jumanca, D.; Podariu, A.; Ardelean, L.; Rusu, L.C. Evaluation by Fluorescent Light of Chemo-Mechanical Treatment of Caries Removal Using Carisolv (TM). Rev. Chim. 2012, 63, 949–952. [Google Scholar]
- Schwendicke, F.; Paris, S.; Tu, Y.-K. Effects of using different criteria for caries removal: A systematic review and network meta-analysis. J. Dent. 2015, 43, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Koller, G.; Foschi, F.; Andiappan, M.; Bruce, K.; Banerjee, A.; Mannocci, F. Self-Limiting versus Conventional Caries Removal: A Randomized Clinical Trial. J. Dent. Res. 2018, 97, 1207–1213. [Google Scholar] [CrossRef]
- AlHumaid, J.; Al-Harbi, F.; El Tantawi, M.; Elembaby, A. X-ray microtomography assessment of Carisolv and Papacarie effect on dentin mineral density and amount of removed tissue. Acta Odontol. Scand. 2018, 76, 236–240. [Google Scholar] [CrossRef]
- Ahmed, M.; Davis, G.; Wong, F. X-Ray Microtomography Study to Validate the Efficacies of Caries Removal in Primary Molars by Hand Excavation and Chemo-Mechanical Technique. Caries Res. 2012, 46, 561–567. [Google Scholar] [CrossRef]
- Bussadori, S.K.; Amancio, O.M.; Martins, M.D.; Guedes, C.C.; Alfaya, T.A.; Santos, E.M.; França, C.M. Production of Extracellular Matrix Proteins by Human Pulp Fibroblasts in Contact with Papacárie and Carisolv. Oral Health Prev. Dent. 2014, 12, 55–59. [Google Scholar] [CrossRef]
- Zawaideh, F.; Palamara, J.E.A.; Messer, L.B. Bonding of resin composite to caries-affected dentin after Carisolv(®) treatment. Pediatr. Dent. 2011, 33, 213–220. [Google Scholar]
- Ali, A.H.; Ben Thani, F.; Foschi, F.; Banerjee, A.; Mannocci, F. Self-Limiting versus Rotary Subjective Carious Tissue Removal: A Randomized Controlled Clinical Trial—2-Year Results. J. Clin. Med. 2020, 9, 2738. [Google Scholar] [CrossRef]
- Yamada, Y.; Masuda, Y.; Kimura, Y.; Hossain, M.; Manabe, A.; Hisamitsu, H. Adhesiveness of Various Glass Ionomer Cements in Cavities Treated with Carisolv. J. Clin. Pediatr. Dent. 2012, 37, 183–187. [Google Scholar] [CrossRef]
- Moldovanu, A.; Pancu, G.; Stoleriu, S.; Georgescu, A.; Sandu, A.V.; Andrian, S. Study Regarding the Inorganic Component Changes in Remaining Root Dentin after Carious Dentin Removal with Carisolv System. Rev. Chim. 2013, 64, 1096–1099. [Google Scholar]
- Li, R.; Zhao, Y.; Ye, L. How to make choice of the carious removal methods, Carisolv or traditional drilling? A meta-analysis. J. Oral Rehabil. 2014, 41, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Mark, A.; Magdolna, S.R.; Zoltan, J.; Tamas, V.; Jozsef, P. Essential new information for the clinical recognition of COVID-19 infection and the prevention possibilities of healthcare personnel working in the head and neck region. Orv. Hetil. 2020, 161, 660–666. [Google Scholar] [CrossRef]
- Hashem, D.; Mannocci, F.; Patel, S.; Manoharan, A.; Watson, T.F.; Banerjee, A. Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: A randomised controlled clinical trial—2-year results. Clin. Oral Investig. 2019, 23, 1931–1939. [Google Scholar] [CrossRef]
- Ammari, M.M.; Moliterno, L.F.M.; Hirata, R.; Sellos, M.C.; Soviero, V.M.; Coutinho, W.P. Efficacy of chemomechanical caries removal in reducing cariogenic microbiota: A randomized clinical trial. Braz. Oral Res. 2014, 28, 281–286. [Google Scholar] [CrossRef]
- Moimaz, S.A.S.; Okamura, A.Q.C.; Lima, D.C.; Saliba, T.A.; Saliba, N.A. Clinical and Microbiological Analysis of Mechanical and Chemomechanical Methods of Caries Removal in Deciduous Teeth. Oral Health Prev. Dent. 2019, 17, 283–288. [Google Scholar] [CrossRef]
- Rajakumar, S.; Mungara, J.; Joseph, E.; Philip, J.; Guptha, V.; Pally, S.M. Evaluation of Three Different Caries Removal Techniques in Children: A Comparative Clinical Study. J. Clin. Pediatr. Dent. 2013, 38, 23–26. [Google Scholar] [CrossRef]
- Kochhar, G.K.; Srivastava, N.; Pandit, I.K.; Gugnani, N.; Gupta, M. An Evaluation of Different Caries Removal Techniques in Primary Teeth: A Comparitive Clinical Study. J. Clin. Pediatr. Dent. 2011, 36, 5–9. [Google Scholar] [CrossRef]
- Reddy, M.V.C.; Shankar, A.S.; Pentakota, V.G.; Kolli, H.; Ganta, H.; Katari, P.K. Efficacy of antimicrobial property of two commercially available chemomechanical caries removal agents (Carisolv and Papacarie): An ex vivo study. J. Int. Soc. Prev. Community Dent. 2015, 5, 183. [Google Scholar] [CrossRef]
- Maru, V.P.; Shakuntala, B.; Nagarathna, C. Caries Removal by Chemomechanical (Carisolv™) vs. Rotary Drill: A Systematic Review. Open Dent. J. 2015, 9, 462. [Google Scholar] [CrossRef]
Word No. | Group 1 (Red) | Occ. | T.L.S. | Group 2 (Green) | Occ. | T.L.S. | Group 3 (Blue) | Occ. | T.L.S. | Group 4 (Yellow) | Occ. | T.L.S. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Adhesion | 4 | 26 | Carious dentin | 21 | 137 | Adhesive systems | 13 | 89 | Clinical evaluation | 12 | 76 |
2 | Bond strength | 4 | 29 | Cavity preparation | 6 | 43 | Caries removal | 30 | 188 | Deciduous teeth | 7 | 43 |
3 | Chemo-mechanical caries removal | 37 | 213 | Dental pulp | 4 | 19 | Carisolv | 47 | 260 | Dental caries | 19 | 111 |
4 | Enamel | 6 | 44 | Er:YAG laser | 9 | 70 | Composite resin | 8 | 57 | Dentin | 20 | 101 |
5 | Papacárie | 19 | 103 | Fluorescence | 5 | 34 | Glass ionomer cement | 5 | 18 | Efficacy | 14 | 81 |
6 | Papain | 4 | 26 | In vitro | 8 | 53 | Interface | 4 | 29 | Pain | 7 | 42 |
7 | Self-etch adhesives | 8 | 60 | Micro-computerized tomography | 5 | 37 | Microtensile bond strength | 7 | 60 | Pediatric patients | 7 | 45 |
8 | Smear layer | 4 | 25 | Minimally invasive dentistry | 9 | 52 | Removal | 7 | 32 | Primary teeth | 8 | 61 |
9 | Sodium hypochlorite | 6 | 26 | Scanning electron microscopy | 6 | 42 | Sound dentin | 5 | 34 | Rotary instruments | 8 | 50 |
10 | System | 7 | 48 | |||||||||
11 | Teeth | 8 | 44 |
Group 1 (Red) | Doc. | Cit. | T.L.S. | Group 2 (Green) | Doc. | Cit. | T.L.S. | Group 3 (Dark Blue) | Doc. | Cit. | T.L.S. |
---|---|---|---|---|---|---|---|---|---|---|---|
Ali, A. H. | 2 | 10 | 6 | Cebe, M. A. | 3 | 28 | 9 | Coutinho, E. | 3 | 93 | 9 |
Banerjee, A. | 4 | 45 | 10 | Karaarslan, E. S. | 3 | 28 | 9 | De Munck, J. | 3 | 93 | 9 |
Foschi, F. | 2 | 10 | 6 | Ozturk, B. | 2 | 18 | 6 | Neves, A. A. | 3 | 93 | 9 |
Mannocci, F. | 4 | 45 | 10 | Yegin, Z. | 2 | 26 | 7 | Van Meerbeek, B. | 3 | 93 | 9 |
Watson, T. F. | 2 | 35 | 4 | Yildiz, E. | 2 | 26 | 7 | ||||
Group 4 (Yellow) | Doc. | Cit. | T.L.S. | Group 5 (Purple) | Doc. | Cit. | T.L.S. | Group 6 (Light Blue) | Doc. | Cit. | T.L.S. |
Burrow, M. F. | 7 | 92 | 16 | Hossain, M. | 2 | 5 | 6 | Basting, R. T. | 2 | 29 | 4 |
Hamama, H. | 7 | 92 | 16 | Kimura, Y. | 2 | 5 | 6 | Amaral, F. L. B. | 2 | 29 | 4 |
King, N. M. | 2 | 27 | 6 | Masuda, Y. | 2 | 5 | 6 | Florio, F. M. | 2 | 29 | 4 |
Yiu, C. K. Y. | 7 | 92 | 16 | Yamada, Y. | 2 | 5 | 6 | ||||
Group 7 (Orange) | Doc. | Cit. | T.L.S. | Group 8 (Brown) | Doc. | Cit. | T.L.S. | Group 9 (Pink) | Doc. | Cit. | T.L.S. |
Maru, Viral P. | 2 | 6 | 2 | Andrian, S. | 2 | 4 | 4 | Alhumaid, J. | 2 | 2 | 0 |
Nagarathna, C. | 2 | 8 | 3 | Pancu, G. | 2 | 4 | 4 | ||||
Shakuntala, B. S. | 2 | 8 | 3 | Stoleriu, S. | 2 | 4 | 4 | ||||
Group 10 (Light Green) | Doc. | Cit. | T.L.S. | ||||||||
Almhoejd, U. S. | 2 | 15 | 0 |
Group 1 | Doc. | Cit. | T.L.S. | Group 2 | Doc. | Cit. | T.L.S. | Group 3 | Doc. | Cit. | T.L.S. |
---|---|---|---|---|---|---|---|---|---|---|---|
England | 6 | 55 | 8 | Bangladesh | 1 | 1 | 1 | Australia | 8 | 90 | 13 |
Iraq | 2 | 10 | 3 | Czech Republic | 1 | 1 | 4 | Egypt | 7 | 77 | 14 |
Italy | 2 | 9 | 3 | Indonesia | 1 | 1 | 4 | Jordan | 1 | 3 | 1 |
Norway | 1 | 8 | 1 | Japan | 4 | 13 | 6 | People’s Republic of China | 11 | 122 | 12 |
Portugal | 1 | 2 | 2 | Mexico | 2 | 7 | 1 | ||||
Russia | 2 | 2 | 4 | ||||||||
Sweden | 2 | 15 | 2 | ||||||||
Group 4 | Doc. | Cit. | T.L.S. | Group 5 | Doc. | Cit. | T.L.S. | Group 6 | Doc. | Cit. | T.L.S. |
India | 16 | 66 | 3 | Brazil | 7 | 40 | 1 | Germany | 1 | 31 | 1 |
Malaysia | 1 | 0 | 1 | Syria | 1 | 2 | 1 | Taiwan | 1 | 31 | 1 |
Saudi Arabia | 5 | 16 | 3 | USA | 2 | 2 | 2 | ||||
Group 7 | Doc. | Cit. | T.L.S. | Group 8 | Doc. | Cit. | T.L.S. | Group 9 | Doc. | Cit. | T.L.S. |
Belgium | 3 | 93 | 0 | Macedonia | 1 | 0 | 0 | Romania | 3 | 8 | 0 |
Group 10 | Doc. | Cit. | T.L.S. | Group 11 | Doc. | Cit. | T.L.S. | ||||
Spain | 1 | 8 | 0 | Turkey | 5 | 31 | 0 |
Group 1 | Doc. | Cit. | T.L.S. | Group 2 | Doc. | Cit. | T.L.S. | Group 3 | Doc. | Cit. | T.L.S. |
---|---|---|---|---|---|---|---|---|---|---|---|
Abant Izzet Baysal Univ. | 2 | 12 | 3 | I.M. Sechenov First Moscow State Med. Univ. | 2 | 2 | 1 | Mansoura Univ. | 5 | 63 | 10 |
Gaziantep Univ. | 2 | 26 | 3 | Kings Coll. London | 3 | 20 | 1 | Univ. Hong Kong | 6 | 81 | 10 |
Selcuk Univ. | 3 | 28 | 4 | Univ. Baghdad | 2 | 10 | 2 | Univ. Melbourne | 6 | 66 | 10 |
Group 4 | Doc. | Cit. | T.L.S. | Group 5 | Doc. | Cit. | T.L.S. | Group 6 | Doc. | Cit. | T.L.S. |
Ohu Univ. | 2 | 5 | 2 | Catholic Univ. Louvain | 2 | 69 | 0 | Imam Abdulrahman Bin Faisal Univ. | 3 | 4 | 0 |
Showa Univ. | 2 | 5 | 2 | ||||||||
Group 7 | Doc. | Cit. | T.L.S. | Group 8 | Doc. | Cit. | T.L.S. | Group 9 | Doc. | Cit. | T.L.S. |
RajaRajeswari Dent. Coll. & Hosp. | 2 | 8 | 0 | Sichuan Univ. | 2 | 14 | 0 | St. Joseph Dent. Coll. | 2 | 9 | 0 |
Group 10 | Doc. | Cit. | T.L.S. | ||||||||
Univ. Gothenburg | 2 | 15 | 0 |
Group 1 (Red) | Cit. | T.L.S. | Group 2 (Green) | Cit. | T.L.S. | Group 3 (Blue) | Cit. | T.L.S. |
---|---|---|---|---|---|---|---|---|
Acta Odontol. Scand. | 30 | 771 | Am. J. Dent. | 45 | 1224 | Arch. Oral Biol. | 10 | 223 |
Braz. J. Oral Sci. | 11 | 358 | Aust. Dent. J. | 63 | 1705 | Braz. Dent. J. | 17 | 486 |
Braz. Oral Res. | 15 | 417 | Dent. Mater. | 74 | 2004 | Eur. J. Oral Sci. | 34 | 931 |
Brit. Dent. J. | 67 | 1655 | Dent. Mater. J. | 21 | 635 | Int. Endod. J. | 32 | 627 |
Caries Res. | 183 | 3865 | J. Adhes. Dent. | 36 | 1075 | J. Clin. Periodontol. | 17 | 184 |
Clin. Oral Invest. | 21 | 547 | J. Dent. | 176 | 4633 | J. Conserv. Dent. | 17 | 335 |
Clin. Oral Investig. | 41 | 1097 | J. Dent. Res. | 108 | 2842 | J. Endodont. | 47 | 769 |
Cochrane Db. Syst. Rev. | 11 | 301 | Laser Med. Sci. | 15 | 406 | J. Periodontol. | 14 | 134 |
Indian J. Dent. Res. | 15 | 346 | Oper. Dent. | 97 | 2758 | |||
Int. Dent J. | 31 | 866 | Quintessence Int. | 45 | 1205 | |||
Int. J. Paediatr. Dent. | 26 | 665 | ||||||
J. Am. Dent. Assoc. | 58 | 1526 | ||||||
J. Clin. Pediatr. Dent. | 126 | 2999 | ||||||
J. Contemp. Dent. Pract. | 13 | 370 | ||||||
J. Dent. Child. | 27 | 681 | ||||||
J. Indian Soc. Pedod. Prev. Dent. | 19 | 466 | ||||||
J. Oral Rehabil. | 27 | 720 | ||||||
Oral Health Prev. Dent. | 16 | 355 | ||||||
Pediatr. Dent. | 27 | 691 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratu, D.C.; Nikolajevic-Stoican, N.; Popa, G.; Pop, S.I.; Dragoș, B.; Luca, M.-M. A Bibliometric Analysis (2010–2020) of the Dental Scientific Literature on Chemo-Mechanical Methods of Caries Removal Using Carisolv and BRIX3000. Medicina 2022, 58, 788. https://doi.org/10.3390/medicina58060788
Bratu DC, Nikolajevic-Stoican N, Popa G, Pop SI, Dragoș B, Luca M-M. A Bibliometric Analysis (2010–2020) of the Dental Scientific Literature on Chemo-Mechanical Methods of Caries Removal Using Carisolv and BRIX3000. Medicina. 2022; 58(6):788. https://doi.org/10.3390/medicina58060788
Chicago/Turabian StyleBratu, Dana Cristina, Nicoleta Nikolajevic-Stoican, George Popa, Silvia Izabella Pop, Bianca Dragoș, and Magda-Mihaela Luca. 2022. "A Bibliometric Analysis (2010–2020) of the Dental Scientific Literature on Chemo-Mechanical Methods of Caries Removal Using Carisolv and BRIX3000" Medicina 58, no. 6: 788. https://doi.org/10.3390/medicina58060788
APA StyleBratu, D. C., Nikolajevic-Stoican, N., Popa, G., Pop, S. I., Dragoș, B., & Luca, M.-M. (2022). A Bibliometric Analysis (2010–2020) of the Dental Scientific Literature on Chemo-Mechanical Methods of Caries Removal Using Carisolv and BRIX3000. Medicina, 58(6), 788. https://doi.org/10.3390/medicina58060788