Association of Functional Characteristics and Physiotherapy with COVID-19 Mortality in Intensive Care Unit in Inpatients with Cardiovascular Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Reporting
2.2. Setting and Participants
2.3. Clinical Measurements
2.4. Functional Measurements at ICU Admission
2.5. Physiotherapy Interventions
2.6. Study Outcomes
2.7. Data Access and Cleaning Methods
2.8. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Outcomes and Factors Associated with COVID-19+ Test Result
3.3. Outcomes and Factors Associated with in-ICU Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Brant, L.C.C.; Nascimento, B.R.; Passos, V.M.A.; Duncan, B.B.; Bensenõr, I.J.M.; Malta, D.C.; de Fatima Martins de Souza, M.; Ishitani, L.H.; França, E.; Oliveira, M.S.; et al. Variations and particularities in cardiovascular disease mortality in brazil and brazilian states in 1990 and 2015: Estimates from the global burden of disease. Rev. Bras. Epidemiol. 2017, 20, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinho, F.; de Azeredo Passos, V.M.; Carvalho Malta, D.; Barboza França, E.; Abreu, D.M.X.X.; Araújo, V.E.M.M.; Bustamante-Teixeira, M.T.; Camargos, P.A.M.M.; da Cunha, C.C.; Duncan, B.B.; et al. Burden of disease in Brazil, 1990–2016: A systematic subnational analysis for the global burden of disease study 2016. Lancet 2018, 392, 760–775. [Google Scholar] [CrossRef] [Green Version]
- Lotufo, P.A. The pace of reduction of cardiovascular mortality in Brazil (1990 to 2017) is slowing down. Sao Paulo Med. J. 2019, 137, 3–5. [Google Scholar] [CrossRef]
- Buddeke, J.; Bots, M.L.; van Dis, I.; Liem, A.; Visseren, F.L.J.; Vaartjes, I. Trends in comorbidity in patients hospitalised for cardiovascular disease. Int. J. Cardiol. 2017, 248, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and cardiovascular disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Cheruiyot, I.; Aggarwal, S.; Wong, J.; Lippi, G.; Lavie, C.J.; Henry, B.M.; Sanchis-Gomar, F. Association of cardiovascular disease with coronavirus disease 2019 (COVID-19) severity: A meta-analysis. Curr. Probl. Cardiol. 2020, 45, 100617. [Google Scholar] [CrossRef]
- Mehra, M.R.; Desai, S.S.; Kuy, S.; Henry, T.D.; Patel, A.N. Cardiovascular disease, drug therapy, and mortality in COVID-19. N. Engl. J. Med. 2020, 382, e102. [Google Scholar] [CrossRef]
- Creditor, M.C. Hazards of hospitalization of the elderly. Ann. Intern. Med. 1993, 118, 219–223. [Google Scholar] [CrossRef]
- Ferreira, N.A.; Lopes, A.J.; Ferreira, A.S.; Ntoumenopoulos, G.; Dias, J.; Guimaraes, F.S. Determination of functional prognosis in hospitalized patients following an intensive care admission. World J. Crit. Care Med. 2016, 5, 219. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T. Relationship between muscle function, muscle typology and postural performance according to different postural conditions in young and older adults. Front. Physiol. 2017, 8, 585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarden, J.J.; van der Schaaf, M.; van der Esch, M.; Reichardt, L.A.; van Seben, R.; Bosch, J.A.; Twisk, J.W.R.; Buurman, B.M.; Engelbert, R.H.H. Muscle strength is longitudinally associated with mobility among older adults after acute hospitalization: The hospital-ADL study. PLoS ONE 2019, 14, e0219041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonter, S.J.; Alter, K.; Bartels, M.N.; Bean, J.F.; Brodsky, M.B.; González-Fernández, M.; Henderson, D.K.; Hoenig, H.; Russell, H.; Needham, D.M.; et al. What now for rehabilitation specialists? Coronavirus disease 2019 questions and answers. Arch. Phys. Med. Rehabil. 2020, 101, 2233–2242. [Google Scholar] [CrossRef]
- Johnson, J.K.; Lapin, B.; Green, K.; Stilphen, M. Frequency of physical therapist intervention is associated with mobility status and disposition at hospital discharge for patients with COVID-19. Phys. Ther. 2021, 101, pzaa181. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.D.; Harrell, F.E., Jr.; Snell, K.I.E.; Ensor, J.; Burke, D.L.; Moons, K.G.M.; Collins, G.S. Minimum sample size for developing a multivariable prediction model: Part I—Continuous outcomes. Stat. Med. 2018, 38, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Vanpee, G.; Hermans, G.; Segers, J.; Gosselink, R. Assessment of limb muscle strength in critically ill patients. Crit. Care Med. 2014, 42, 701–711. [Google Scholar] [CrossRef]
- Kawaguchi, Y.M.F.; Nawa, R.K.; Figueiredo, T.B.; Martins, L.; Pires-Neto, R.C. Perme intensive care unit mobility score and ICU mobility scale: Translation into portuguese and cross-cultural adaptation for use in Brazil. J. Bras. Pneumol. 2016, 42, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Perner, A.; Citerio, G.; Bakker, J.; Bassetti, M.; Benoit, D.; Cecconi, M.; Curtis, J.R.; Doig, G.S.; Herridge, M.; Jaber, S.; et al. Year in review in intensive care medicine 2014: II. ARDS, airway management, ventilation, adjuvants in sepsis, hepatic failure, symptoms assessment and management, palliative care and support for families, prognostication, organ donation, outcome, organis. Intensive Care Med. 2015, 41, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.B.; Ísola, A.M.; Gama, A.M.C.; Duarte, A.C.M.; Vianna, A.; Neto, A.S.; de Carvalho Farias, A.M.; de Arruda Bravim, B.; do Valle Pinheiro, B.; Mazza, B.F.; et al. Brazilian recommendations of mechanical ventilation 2013. Part I. J. Bras. Pneumol. 2014, 40, 327–363. [Google Scholar] [CrossRef] [Green Version]
- Committee, M.V.; Brasileira, M.I.; Therapy, I.; Society, B.T.; Brasileira, S. Brazilian recommendations of mechanical ventilation 2013. Part 2. J. Bras. Pneumol. 2014, 40, 458–486. [Google Scholar] [CrossRef] [Green Version]
- Lamb, K.D. Year in review 2014: Mechanical ventilation. Respir. Care 2015, 60, 606–608. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, N.R. Patient-ventilator interactions: Optimizing conventional ventilation modes. Respir. Care 2011, 56, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Gomersall, C.D.; Ng, S.K.; Underwood, M.J.; Lee, A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology 2015, 122, 832–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rialp Cervera, G.; del Castillo Blanco, A.; Pérez Aizcorreta, O.; Parra Morais, L. Ventilación mecánica no invasiva en la enfermedad pulmonar obstructiva crónica y en el edema agudo de pulmón cardiogénico. Med. Intensiva 2014, 38, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Barbas, C.S.V.; Ísola, A.M.; Farias, A.M.C.; Cavalcanti, A.B.; Gama, A.M.C.; Duarte, A.C.M.; Amado, V.M. Brazilian recommendations of mechanical ventilation 2013. Part 2. J. Bras. Pneumol. 2014, 40, 458–486. [Google Scholar] [CrossRef]
- Nakamura, M.A.M.; Costa, E.L.V.; Carvalho, C.R.R.; Tucci, M.R. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: A bench study. J. Bras. Pneumol. 2014, 40, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, L.Y.; Figueiroa, M.; da Silveira, L.T.Y.; Travaglia, T.C.F.; Bernardes, S.; Fu, C. Noninvasive positive pressure ventilation after extubation: Features and outcomes in clinical practice. Rev. Bras. Ter. Intensiva 2015, 27, 252–259. [Google Scholar] [CrossRef]
- Jochmans, S.; Mazerand, S.; Chelly, J.; Pourcine, F.; Sy, O.; Thieulot-Rolin, N.; Ellrodt, O.; Mercier Des Rochettes, E.; Michaud, G.; Serbource-Goguel, J.; et al. Duration of prone position sessions: A prospective cohort study. Ann. Intensive Care 2020, 10, 66. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Jiang, W.; Wang, J.; Zhu, M.; Song, J.; Wang, X.; Su, Y.; Xiang, G.; Ye, M.; et al. Clinical predictors of COVID-19 disease progression and death: Analysis of 214 hospitalised patients from Wuhan, China. Clin. Respir. J. 2021, 15, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Jutzeler, C.R.; Bourguignon, L.; Weis, C.V.; Tong, B.; Wong, C.; Rieck, B.; Pargger, H.; Tschudin-Sutter, S.; Egli, A.; Borgwardt, K.; et al. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020, 37, 101825. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.J.M.; Bastos, G.C.F.C.; Souza, A.C.L. De profile of hospitalization of the elderly. Rev. Soc. Bras. Clínica Médica 2017, 15, 15–20. [Google Scholar]
- Rees, E.M.; Nightingale, E.S.; Jafari, Y.; Waterlow, N.R.; Clifford, S.; Pearson, C.A.B.; Group, C.W.; Jombart, T.; Procter, S.R.; Knight, G.M. COVID-19 length of hospital stay: A systematic review and data synthesis. BMC Med. 2020, 18, 270. [Google Scholar] [CrossRef] [PubMed]
- Bastos, G.A.N.; de Azambuja, A.Z.; Polanczyk, C.A.; Gräf, D.D.; Zorzo, I.W.; Maccari, J.G.; Haygert, L.S.; Nasi, L.A.; Gazzana, M.B.; Bessel, M.; et al. Características clínicas e preditores de ventilação mecânica em pacientes com COVID-19 hospitalizados no sul do país. Rev. Bras. Ter. Intensiva 2020, 32, 487–492. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğ Lu, U. Severe COVID-19 pneumonia: Pathogenesis and clinical management. BMJ 2021, 372, n436. [Google Scholar] [CrossRef]
- Nasa, P.; Azoulay, E.; Khanna, A.K.; Jain, R.; Gupta, S.; Javeri, Y.; Juneja, D.; Rangappa, P.; Sundararajan, K.; Alhazzani, W.; et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a delphi method. Crit. Care 2021, 25, 106. [Google Scholar] [CrossRef]
- Bonorino, K.C.; Cani, K.C. Mobilização precoce em tempos de COVID-19. Rev. Bras. Ter. Intensiva 2020, 32, 484–486. [Google Scholar] [CrossRef]
- Mendez-Tellez, P.A.; Needham, D.M. Early physical rehabilitation in the ICU and ventilator liberation. Respir. Care 2012, 57, 1663–1669. [Google Scholar] [CrossRef]
- Kurtz, P.; Bastos, L.S.L.; Dantas, L.F.; Zampieri, F.G.; Soares, M.; Hamacher, S.; Salluh, J.I.F.; Bozza, F.A. Evolving changes in mortality of 13,301 critically ill adult patients with COVID-19 over 8 months. Intensive Care Med. 2021, 47, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Benito, L.A.O.; da Cruz Lima, R.; de Lima Palmeira, A.M.; de Oliveira Karnikowski, M.G.; da Silva, I.C.R. Variants of the SARS-CoV-2 virus that cause COVID-19 in Brazil. Rev. Divulg. Científica Sena Aires 2021, 10, 205–219. [Google Scholar] [CrossRef]
- Tabah, A.; Ramanan, M.; Laupland, K.B.; Buetti, N.; Cortegiani, A.; Mellinghoff, J.; Conway Morris, A.; Camporota, L.; Zappella, N.; Elhadi, M.; et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): An international survey. J. Crit. Care 2020, 59, 70–75. [Google Scholar] [CrossRef] [PubMed]
COVID-19− | COVID-19+ | Total | p Value | |
---|---|---|---|---|
(n = 58) | (n = 42) | (n = 100) | ||
Length of ICU stay, days | 6.2 (6.8) | 14.5 (21.7) | 9.7 (15.5) | 0.0071 |
Glasgow, score | 13 (3.0) | 14 (1.5) | 14 (2.5) | 0.0561 |
APACHE II, score | 30.3 (4.8) | 30.2 (4.9) | 30.2 (4.8) | 0.9171 |
Admission functional outcomes | ||||
MRC, score | 43.8 (10.4) | 48.3 (7.9) | 45.7 (9.6) | 0.0211 |
IMS, score | 3.9 (3.8) | 5.5 (4.0) | 4.6 (3.9) | 0.0391 |
Age, years | 80.4 (13.4) | 68.1 (16.2) | 75.2 (15.8) | <0.001 1 |
Sex, n | 0.1472 | |||
Female | 32 (55.2%) | 17 (40.5%) | 49 (49.0%) | |
Male | 26 (44.8%) | 25 (59.5%) | 51 (51.0%) | |
Body mass, kg | 72.3 (17.4) | 81.9 (18.7) | 76.3 (18.5) | 0.0101 |
Body height, m | 1.6 (0.1) | 1.7 (0.1) | 1.7 (0.1) | 0.0061 |
Body mass index, kg/m2 | 26.4 (4.7) | 28.2 (5.4) | 27.1 (5.1) | 0.0791 |
Body mass index category, n (%) | 0.4512 | |||
Thin | 3 (5.2%) | 1 (2.4%) | 4 (4.0%) | |
Eutrophic | 19 (32.8%) | 11 (26.2%) | 30 (30.0%) | |
Overweight | 25 (43.1%) | 15 (35.7%) | 40 (40.0%) | |
Obesity I | 7 (12.1%) | 10 (23.8%) | 17 (17.0%) | |
Obesity II | 4 (6.9%) | 4 (9.5%) | 8 (8.0%) | |
Obesity III | 0 (0.0%) | 1 (2.4%) | 1 (1.0%) | |
Vital signs | ||||
Heart rate, beat/min | 84.4 (21.8) | 85.5 (17.6) | 84.9 (20.0) | 0.7941 |
Respiratory rate, cycle/min | 21.9 (5.5) | 21.9 (5.3) | 21.9 (5.4) | 0.9961 |
Systolic pressure, mmHg | 137.5 (26.1) | 129.5 (25.0) | 134.1 (25.8) | 0.1271 |
Diastolic pressure, mmHg | 76.9 (18.8) | 75.2 (16.6) | 76.2 (17.9) | 0.6431 |
Pulse pressure, mmHg | 60.6 (23.1) | 54.3 (17.4) | 58.0 (21.0) | 0.1391 |
Mean pressure, mmHg | 97.1 (18.6) | 93.3 (18.0) | 95.5 (18.3) | 0.3111 |
Laboratory exams | ||||
Sodium, mEq/L | 135.8 (6.4) | 135.5 (6.4) | 135.6 (6.3) | 0.8131 |
Potassium, mEq/L | 4.3 (0.8) | 4.2 (0.8) | 4.3 (0.8) | 0.5531 |
Urea, mg/L | 69.6 (56.0) | 71.5 (69.7) | 70.4 (61.8) | 0.8821 |
Creatinine, mg/L | 1.7 (1.8) | 1.5 (1.3) | 1.6 (1.6) | 0.6541 |
Lactate, mg/L | 1.9 (1.3) | 1.6 (0.9) | 1.7 (1.1) | 0.1891 |
Reactive-C protein, CP/μL | 75.9 (90.7) | 108.8 (96.0) | 89.7 (93.9) | 0.0841 |
Hemoglobin, g/dL | 13.0 (2.2) | 12.7 (2.3) | 12.9 (2.2) | 0.5821 |
Hematocrit, % | 37.6 (6.2) | 37.2 (7.2) | 37.4 (6.6) | 0.7751 |
Leukocyte, per mcL | 13,456.8 (6443.9) | 9564.6 (5472.5) | 118,22.1 (6327.6) | 0.0021 |
Platelets, per mcL | 193,869 (80,822) | 177,255 (73,991) | 186,891 (78,078) | 0.2961 |
Lymphocytes, % | 15.5 (9.3) | 15.7 (9.2) | 15.6 (9.2) | 0.9221 |
Neutrophiles, % | 78.4 (10.3) | 77.4 (11.1) | 78.0 (10.6) | 0.6661 |
Gasometry | ||||
pH | 7.4 (0.1) | 7.4 (0.1) | 7.4 (0.1) | 0.0591 |
PCO2, mmHg | 37.7 (8.5) | 31.7 (6.5) | 35.2 (8.2) | <0.001 1 |
Bicarbonate, mEq/L | 23.8 (4.9) | 21.9 (4.5) | 23.0 (4.8) | 0.0441 |
PaO2, mmHg | 100.2 (43.6) | 89.4 (38.6) | 95.7 (41.7) | 0.2031 |
Base excess, mEq/L | −0.5 (5.3) | −1.5 (5.1) | −0.9 (5.2) | 0.3341 |
O2 saturation, % | 95.1 (5.0) | 93.9 (6.0) | 94.6 (5.4) | 0.2891 |
Comorbidities, n (%) | ||||
Hypertension | 55 (94.8%) | 36 (85.7%) | 91 (91.0%) | 0.1162 |
Stroke | 15 (25.9%) | 7 (16.7%) | 22 (22.0%) | 0.2732 |
Coronary artery disease | 14 (24.1%) | 7 (16.7%) | 21 (21.0%) | 0.3652 |
Congestive heart failure | 13 (22.4%) | 3 (7.1%) | 16 (16.0%) | 0.0402 |
Atrial fibrillation | 13 (22.4%) | 2 (4.8%) | 15 (15.0%) | 0.0152 |
Drugs, n (%) | ||||
Vasoactive drug | 20 (34.5%) | 22 (52.4%) | 42 (42.0%) | 0.0732 |
Sedation | 17 (29.3%) | 22 (52.4%) | 39 (39.0%) | 0.0202 |
Exposures | All Participants | Groups | OR (95% CI) | ||
---|---|---|---|---|---|
COVID-19− | COVID-19+ | Univariable | Multivariable | ||
Model 1, Ventilatory support | AIC = 118, C-statistic = 0.783 | ||||
Invasive mechanical ventilation | 40 (40%) | 17 (43%) | 23 (57%) | 2.92 (1.29–6.81), p = 0.011 | 0.45 (0.09–1.81), p = 0.291 |
Invasive mechanical ventilation, in prone | 13 (13%) | 1 (8%) | 12 (92%) | 22.80 (4.19–425.35), p = 0.003 | 5.33 (0.50–134.19), p = 0.207 |
Noninvasive mechanical ventilation | 13 (13%) | 7 (54%) | 6 (46%) | 1.21 (0.36–3.95), p = 0.745 | 0.17 (0.01–1.37), p = 0.132 |
Oxygen therapy | 77 (77%) | 41 (53%) | 36 (47%) | 2.49 (0.92–7.51), p = 0.084 | 1.28 (0.40–4.43), p = 0.685 |
Alveolar recruitment | 19 (19%) | 2 (11%) | 17 (89%) | 19.04 (4.97–125.99), p < 0.001 | 22.34 (3.56–224.91), p = 0.002 |
Awake prone | 9 (9%) | 2 (22%) | 7 (78%) | 5.60 (1.27–39.05), p = 0.038 | 13.41 (1.62–228.22), p = 0.032 |
Length of stay, days | 6.2 (6.8) | 6.2 (6.8) | 14.5 (21.7) | 1.07 (1.02–1.13), p = 0.008 | 1.03 (0.97–1.12), p = 0.329 |
APACHE II, score | 30.2 (4.8) | 30.3 (4.8) | 30.2 (4.9) | 1.00 (0.91–1.08), p = 0.916 | 1.04 (0.97–1.12), p = 0.325 |
Model 2, Mobility | AIC = 138.4, C-statistic = 0.694 | ||||
Restricted mobility | 61 (61%) | 34 (56%) | 27 (44%) | 1.27 (0.56–2.92), p = 0.567 | 0.83 (0.27–2.48), p = 0.739 |
Kinesiotherapy, passive | 51 (51%) | 27 (53%) | 24 (47%) | 1.53 (0.69–3.44), p = 0.297 | 1.81 (0.42–8.45), p = 0.432 |
Kinesiotherapy, active | 68 (68%) | 38 (56%) | 30 (44%) | 1.32 (0.56–3.17), p = 0.532 | 1.17 (0.20–6.17), p = 0.852 |
Standing | 60 (60%) | 32 (53%) | 28 (47%) | 1.62 (0.72–3.77), p = 0.248 | 1.88 (0.30–14.59), p = 0.514 |
Walking | 47 (47%) | 25 (53%) | 22 (42%) | 1.45 (0.65–3.25), p = 0.360 | 1.45 (0.40–5.58), p = 0.577 |
Length of stay, days | 6.2 (6.8) | 6.2 (6.8) | 14.5 (21.7) | 1.07 (1.02–1.13), p = 0.008 | 1.07 (1.01–1.14), p = 0.029 |
APACHE II, score | 30.2 (4.8) | 30.3 (4.8) | 30.2 (4.9) | 1.00 (0.91–1.08), p = 0.916 | 0.98 (0.89–1.08), p = 0.748 |
Exposures | All Participants | Outcomes | OR (95% CI) | ||
---|---|---|---|---|---|
ICU Discharge | In-ICU Death | Univariable | Multivariable | ||
Model 1, Ventilatory support | AIC = 95.6, C-statistic = 0.920 | ||||
COVID-19+ test result | 42 (42%) | 20 (48%) | 22 (52%) | 3.15 (1.37–7.47) p = 0.008 | 5.51 (1.25–28.43), p = 0.029 |
Invasive mechanical ventilation | 40 (40%) | 10 (25%) | 30 (75%) | 22.71 (8.28–70.76), p < 0.001 | 14.81 (2.97–93.70), p = 0.002 |
Invasive mechanical ventilation, in prone | 13 (13%) | 4 (31%) | 9 (69%) | 4.74 (1.42–18.74), p = 0.016 | 0.75 (0.07–9.45), p = 0.813 |
Noninvasive mechanical ventilation | 13 (13%) | 6 (46%) | 7 (54%) | 2.22 (0.68–7.46), p = 0.185 | 0.54 (0.07–4.01), p = 0.535 |
Oxygen therapy | 77 (77%) | 42 (55%) | 35 (45%) | 8.75 (2.34–57.11), p = 0.005 | 2.61 (0.43–24.87), p = 0.334 |
Alveolar recruitment | 19 (19%) | 4 (21%) | 15 (79%) | 10.06 (3.25–38.35), p < 0.001 | 1.68 (0.21–17.57), p = 0.636 |
Awake prone | 9 (9%) | 4 (44%) | 5 (56%) | 2.30 (0.57–9.89), p = 0.237 | 1.88 (0.17–17.51), p = 0.584 |
Admission MRC, score | 45.7 (9.6) | 47.1 (9.2) | 43.2 (10.0) | 0.96 (0.91–1.00), p = 0.055 | 0.96 (0.89–1.03), p = 0.316 |
Admission IMS, score | 4.6 (3.9) | 5.7 (3.8) | 2.8 (3.5) | 0.81 (0.71–0.91), p = 0.001 | 0.79 (0.63–0.96), p = 0.023 |
Length of stay, days | 100 (100%) | 7.0 (9.1) | 14.2 (22.0) | 1.04 (1.01–1.09), p = 0.048 | 0.99 (0.95–1.03), p = 0.629 |
APACHE II, score | 30.2 (4.8) | 29.8 (4.2) | 31.0 (5.7) | 1.05 (0.97–1.15), p = 0.235 | 1.00 (0.88–1.15), p = 0.950 |
Model 2, Mobility | AIC = 81.6, C-statistic = 0.947 | ||||
COVID-19+ test result | 42 (42%) | 20 (48%) | 22 (52%) | 3.15 (1.37–7.47), p = 0.008 | 15.44 (2.80–140.82), p = 0.005 |
Restricted mobility | 61 (61%) | 26 (43%) | 35 (57%) | 24.90 (6.77–161.94), p < 0.001 | 10.49 (1.74–95.85), p = 0.017 |
Kinesiotherapy, passive | 51 (51%) | 17 (33%) | 34 (67%) | 30.67 (9.49–139.52), p < 0.001 | 17.66 (2.32–326.56), p = 0.017 |
Kinesiotherapy, active | 68 (68%) | 53 (78%) | 15 (22%) | 0.13 (0.05–0.32), p < 0.001 | 0.92 (0.11–8.30), p = 0.937 |
Standing | 60 (60%) | 49 (82%) | 11 (18%) | 0.12 (0.05–0.30), p < 0.001 | 0.68 (0.04–15.04), p = 0.791 |
Walking | 47 (47%) | 41 (87%) | 6 (13%) | 0.10 (0.03–0.27), p < 0.001 | 0.07 (0.00–1.19), p = 0.104 |
Admission MRC, score | 45.7 (9.6) | 47.1 (9.2) | 43.2 (10.0) | 0.96 (0.91–1.00), p = 0.055 | 0.99 (0.91–1.06), p = 0.713 |
Admission IMS, score | 4.6 (3.9) | 5.7 (3.8) | 2.8 (3.5) | 0.81 (0.71–0.91), p = 0.001 | 1.09 (0.83–1.51), p = 0.567 |
Length of stay, days | 100 (100%) | 7.0 (9.1) | 14.2 (22.0) | 1.04 (1.01–1.09), p = 0.048 | 0.97 (0.92–1.01), p = 0.192 |
APACHE II, score | 30.2 (4.8) | 29.8 (4.2) | 31.0 (5.7) | 1.05 (0.97–1.15), p = 0.235 | 1.08 (0.95–1.26), p = 0.283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.A.; Lopes, A.J.; Papathanasiou, J.; Reis, L.F.F.; Ferreira, A.S. Association of Functional Characteristics and Physiotherapy with COVID-19 Mortality in Intensive Care Unit in Inpatients with Cardiovascular Diseases. Medicina 2022, 58, 823. https://doi.org/10.3390/medicina58060823
Silva CA, Lopes AJ, Papathanasiou J, Reis LFF, Ferreira AS. Association of Functional Characteristics and Physiotherapy with COVID-19 Mortality in Intensive Care Unit in Inpatients with Cardiovascular Diseases. Medicina. 2022; 58(6):823. https://doi.org/10.3390/medicina58060823
Chicago/Turabian StyleSilva, Chiara Andrade, Agnaldo José Lopes, Jannis Papathanasiou, Luis Felipe Fonseca Reis, and Arthur Sá Ferreira. 2022. "Association of Functional Characteristics and Physiotherapy with COVID-19 Mortality in Intensive Care Unit in Inpatients with Cardiovascular Diseases" Medicina 58, no. 6: 823. https://doi.org/10.3390/medicina58060823
APA StyleSilva, C. A., Lopes, A. J., Papathanasiou, J., Reis, L. F. F., & Ferreira, A. S. (2022). Association of Functional Characteristics and Physiotherapy with COVID-19 Mortality in Intensive Care Unit in Inpatients with Cardiovascular Diseases. Medicina, 58(6), 823. https://doi.org/10.3390/medicina58060823