Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Helicobacter pylori
2.2. Sample Preparation and Peptide Sequencing
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.H.; Xiao, S.D.; Megraud, F.; Leon-Barua, R.; Bazzoli, F.; Van Der Merwe, S.; Vaz Coelho, L.G.; Fock, M.; Fedail, S.; Cohen, H.; et al. World Gastroenterology Organisation Global Guideline Helicobacter pylori in Developing Countries. J. Clin. Gastroenterol. 2011, 45, 383–388. [Google Scholar]
- Burucoa, C.; Axon, A. Epidemiology of Helicobacter pylori infection. Helicobacter 2017, 22, e12403. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.H.; Xiao, S.D.; Megraud, F.; Leon-Barua, R.; Bazzoli, F.; Van der Merwe, S.; Vaz Coelho, L.G.; Fock, M.; Fedail, S.; Cohen, H.; et al. Helicobacter pylori in developing countries. World gastroenterology organisation global guideline. J. Gastrointest. Liver Dis. JGLD 2011, 20, 299–304. [Google Scholar]
- Peek, R.M., Jr.; Crabtree, J.E. Helicobacter infection and gastric neoplasia. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2006, 208, 233–248. [Google Scholar] [CrossRef]
- Moss, S.F.; Sood, S. Helicobacter pylori. Curr. Opin. Infect. Dis. 2003, 16, 445–451. [Google Scholar] [CrossRef]
- Naumann, M.; Sokolova, O.; Tegtmeyer, N.; Backert, S. Helicobacter pylori: A paradigm pathogen for subverting host cell signal transmission. Trends Microbiol. 2017, 25, 316–328. [Google Scholar] [CrossRef]
- Mégraud, F.; Bessède, E.; Varon, C. Helicobacter pylori infection and gastric carcinoma. Clin. Microbiol. Infect. 2015, 21, 984–990. [Google Scholar] [CrossRef]
- Álvarez-Arellano, L.; Maldonado-Bernal, C. Helicobacter pylori and neurological diseases: Married by the laws of inflammation. World J. Gastrointest. Pathophysiol. 2014, 5, 400. [Google Scholar] [CrossRef]
- Magen, E.; Delgado, J.-S. Helicobacter pylori and skin autoimmune diseases. World J. Gastroenterol. WJG 2014, 20, 1510. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, W.; Xie, Y.; Zhao, Y.; Chen, X.; Xu, W.; Wang, Y.; Guan, Z. Proteomics-based identification and analysis of proteins associated with Helicobacter pylori in gastric cancer. PLoS ONE 2016, 11, e0146521. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Ruiz, V.E.; Carroll, J.D.; Moss, S.F. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 2011, 305, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasazuki, S.; Inoue, M.; Iwasaki, M.; Otani, T.; Yamamoto, S.; Ikeda, S.; Hanaoka, T.; Tsugane, S.; Japan Public Health Center Study Group. Effect of Helicobacter pylori infection combined with CagA and pepsinogen status on gastric cancer development among Japanese men and women: A nested case-control study. Cancer Epidemiol. Prev. Biomark. 2006, 15, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Ghalia, K.; Jibran, S.; Muhammad, I.M.; Sameh, S.; Soliman, M.; Christophe, B. Prevalence of Helicobacter pylori and Its Associated Factors among Healthy Asymptomatic Residents in the United Arab Emirates. Pathogens 2019, 8, 44. [Google Scholar] [CrossRef]
- Soylu, Ö.B.; Ozturk, Y. Helicobacter pylori infection: Effect on malnutrition and growth failure in dyspeptic children. Eur. J. Pediatr. 2008, 167, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Covacci, A.; Telford, J.L.; Giudice, G.D.; Parsonnet, J.; Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 1999, 284, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, L.; Figueiredo, C.; Mégraud, F.; Pena, S.; Midolo, P.; Queiroz, D.M.; Carneiro, F.; Vanderborght, B.; Pegado, M.D.; Sanna, R.; et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 1999, 116, 823–830. [Google Scholar] [CrossRef]
- Joel, M.C.; Steven, C.M.; Petr, S.; Edward, L.H.; Kwangbom, C.; Daniel, M.G.; Narayanan, R.; Karen, L.S.; Gary, L.C.; Steven, P.G. Defining the consequences of genetic variation on a proteome-wide scale. Nature 2016, 534, 500–505. [Google Scholar]
- Steven, P.G.; Rochon, Y.; Robert, F.B.; Ruedi, A. Correlation between Protein and mRNA Abundance in Yeast. Mol. Cell Biol. 1999, 19, 1720–1730. [Google Scholar]
- Valli, D.R.; Ombretta, R.; Stefania, Z.; Mariateresa, C.; Laura, C.; Vincenzo, C.; Renato, C. Protein signature characterizing Helicobacter pylori strains of patients with autoimmune atrophic gastritis, duodenal ulcer and gastric cancer. Infect. Agents Cancer 2017, 12, 22. [Google Scholar]
- Vitoriano, I.; Vitor, J.M.B.; Oleastro, M.; Roxo, M.; Vale, F.F. Proteome variability among Helicobacter pylori isolates clustered according to genomic methylation. J. Appl. Microbiol. 2013, 114, 1817–1832. [Google Scholar] [CrossRef] [PubMed]
- Vitoriano, I.; Rocha-Gonçalves, A.; Carvalho, T.; Oleastro, M.; Calado, C.R.C.; Roxo-Rosa, M. Antigenic diversity among Portuguese clinical isolates of Helicobacter pylori. Helicobacter 2011, 16, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Riley, L.W.; Benz, I. Sweet new world: Glycoproteins in bacterial pathogens. Trends Microbiol. 2003, 11, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Goon, S.; Kelly, J.F.; Logan, S.M.; Ewing, C.P.; Guerry, P. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 2003, 50, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Ewing, C.P.; Andreishcheva, E.; Guerry, P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J. Bacteriol. 2009, 191, 7086–7093. [Google Scholar] [CrossRef] [Green Version]
- Logan, S.M. Flagellar glycosylation—A new component of the motility repertoire? Microbiology 2006, 152, 1249–1262. [Google Scholar] [CrossRef]
- Fernandez-Poza, S.; Padros, A.; Thompson, R.; Butler, L.; Islam, M.; Mosely, J.A.; Scrivensab, J.H.; Rehmanc, M.F.; Akram, M.S. Tailor-made recombinant prokaryotic lectins for characterisation of glycoproteins. Anal. Chim. Acta 2021, 1155, 338352. [Google Scholar] [CrossRef]
- Lodhi, M.S.; Khan, M.T.; Bukhari, S.M.H.; Sabir, S.H.; Samra, Z.Q.; Butt, H.; Akram, M.S. Probing Transferrin Receptor Overexpression in Gastric Cancer Mice Models. ACS Omega 2021, 6, 29893–29904. [Google Scholar] [CrossRef]
- Hopf, P.S.; Ford, R.S.; Zebian, N.; Merkx-Jacques, A.; Vijayakumar, S.; Ratnayake, D.; Hayworth, J.; Creuzenet, C. Protein glycosylation in Helicobacter pylori: Beyond the flagellins? PLoS ONE 2011, 6, e25722. [Google Scholar] [CrossRef]
- Schirm, M.; Soo, E.C.; Aubry, A.J.; Austin, J.; Thibault, P.; Logan, S.M. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 2003, 48, 1579–1592. [Google Scholar] [CrossRef]
- Linton, D.; Karlyshev, A.V.; Hitchen, P.G.; Morris, H.R.; Dell, A.; Gregson, N.A.; Wren, B.W. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: Identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol. Microbiol. 2000, 35, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Cha, M.-K.; Kim, I.-H. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 2000, 275, 2924–2930. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.S.; Ur Rehman, J.; Hall, E.A.H. Engineered proteins for bioelectrochemistry. Annu. Rev. Anal. Chem. 2014, 7, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Comtois, S.L.; Gidley, M.D.; Kelly, D.J. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 2003, 149, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kolli, B.K.; Kostal, J.; Zaborina, O.; Chakrabarty, A.M.; Chang, K.-P. Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol. Biochem. Parasitol. 2008, 158, 163–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain Dar, H.; Prasad, D.; Varshney, G.C.; Chakraborti, P.K. Secretory nucleoside diphosphate kinase from both the intra-and extra-cellular pathogenic bacteria are functionally indistinguishable. Microbiology 2011, 157, 3024–3035. [Google Scholar]
- Spooner, R.; Yilmaz, Ö. The role of reactive-oxygen-species in microbial persistence and inflammation. Int. J. Mol. Sci. 2011, 12, 334–352. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-Z.; Goldberg, J.B.; Hatakeyama, M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Futur. Oncol. 2010, 6, 851–862. [Google Scholar] [CrossRef]
- Wickner, W.; Schekman, R. Protein translocation across biological membranes. Science 2005, 310, 1452–1456. [Google Scholar] [CrossRef]
- Stephenson, K. Sec-dependent protein translocation across biological membranes: Evolutionary conservation of an essential protein transport pathway. Mol. Membr. Biol. 2005, 22, 17–28. [Google Scholar] [CrossRef]
Factors | n = 150 | HP Positive n (%) | HP Negative n (%) | p-Value | |
---|---|---|---|---|---|
Age group | 1–25 years | 11 (7.3) | 5 (6.7) | 6 (8.0) | 0.949 |
26–50 years | 75 (50.0) | 38 (50.7) | 37 (49.3) | ||
>50 years | 64 (42.7) | 32 (42.7) | 32 (42.7) | ||
Gender | Female | 81 (54.0) | 35 (46.7) | 46 (61.3) | 0.072 |
Male | 69 (46.0) | 40 (53.3) | 29 (38.7) | ||
Ulcer complications | No | 115 (76.7) | 56 (74.7) | 59 (78.7) | 0.562 |
Yes | 35 (23.3) | 19 (25.3) | 16 (21.3) | ||
Endoscopic finding | Cancer | 35 (23.3) | 24 (32.0) | 11 (14.7) | 0.037 |
Gastritis | 62 (41.3) | 29 (38.7) | 33 (44.0) | ||
Ulcer | 53 (35.3) | 22 (29.3) | 31 (41.3) | ||
Biopsy sites | Antrum | 91 (60.7) | 55 (73.3) | 36 (48.0) | 0.000 |
Corpus | 43 (28.7) | 19 (25.3) | 24 (32.0) | ||
Fundus | 16 (10.7) | 1 (1.3) | 15 (20.0) |
S. No. | Condition | Status | Accession No. | Protein Name | Mol. W * (Da) | Gene Name | MFC ** |
---|---|---|---|---|---|---|---|
1 | Cancer vs. Gastritis | Upregulated | GI:407224289 | Hydrogenase maturation factor HypA | 13,202 | hypA | 2.32 |
GI:407225892 | Nucleoside diphosphate kinase | 15,318 | ndk | 4.81 | |||
Downregulated | GI:407224220 | ThiS family protein | 8097 | OUQ_1033 | −2.23 | ||
GI:407223472 | HNH endonuclease family protein | 11,209 | OUQ_1426 | −2.52 | |||
GI:407223928 | Putative pZ21b | 16,656 | OUQ_1226 | −2.41 | |||
GI:407225875 | Pseudaminic acid synthase | 38,076 | pseI | −2.02 | |||
2 | Cancer vs. Ulcer | Upregulated | Not available | Uncharacterized protein | 16,179 | OUQ_1153 | 2.22 |
GI:407224758 | Sec-independent protein translocase protein TatB | 17,799 | tatB | 2.16 | |||
GI:407223928 | Putative pZ21b | 16,656 | OUQ_1226 | 2.33 | |||
Not available | DUF3944 domain-containing protein | 12,002 | OUQ_0172 | 2.66 | |||
GI:407225875 | Pseudaminic acid synthase | 38,076 | pseI | 2.03 | |||
Downregulated | GI:407224184 | Uncharacterized protein | 11,580 | OUQ_0997 | −2.11 | ||
GI:1661363461 | DUF3972 domain-containing protein | 22,550 | OUQ_0609 | −2.29 | |||
GI:407225892 | Nucleoside diphosphate kinase | 15,318 | ndk | −3.06 | |||
Not available | Thioredoxin peroxidase | 17,130 | OUQ_0313 | −10.19 | |||
3 | Ulcer vs. Gastritis | Upregulated | GI:407224289 | Hydrogenase maturation factor HypA | 13,202 | hypA | 3.59 |
GI:407224758 | Sec-independent protein translocase protein TatB | 17,799 | tatB | 4.18 | |||
GI:407225788 | Glycosyl transferase 11 family protein | 17,194 | OUQ_0267 | 3.48 | |||
Downregulated | GI:1661363461 | DUF3972 domain-containing protein | 22,550 | OUQ_0609 | −3.49 | ||
GI:407224220 | ThiS family protein | 8097 | OUQ_1033 | −2.06 | |||
GI:407225957 | Flagellar FliJ protein | 16,751 | OUQ_0438 | −2.88 | |||
Not available | Thioredoxin peroxidase | 17,130 | OUQ_0313 | −6.16 | |||
GI:407223472 | HNH endonuclease family protein | 11,209 | OUQ_1426 | −3.34 |
Protein Name | VaxiJen Score | Antigenicity |
---|---|---|
Hydrogenase maturation factor HypA | 0.3364 | Non-antigenic |
Nucleoside diphosphate kinase | 0.3847 | Non-antigenic |
ThiS family protein | 0.3488 | Non-antigenic |
HNH endonuclease family protein | 0.9778 | Antigenic |
Putative pZ21b | 0.5140 | Antigenic |
Pseudaminic acid synthase | 0.4120 | Antigenic |
Uncharacterized protein | 0.1738 | Non-antigenic |
Sec-independent protein translocase protein TatB | 0.5732 | Antigenic |
DUF3944 domain-containing protein | 0.4661 | Antigenic |
Uncharacterized protein | 0.1528 | Non-antigenic |
DUF3972 domain-containing protein | 0.3545 | Non-antigenic |
Thioredoxin peroxidase | 0.4745 | Antigenic |
Glycosyl transferase 11 family protein | 0.4499 | Antigenic |
Flagellar FliJ protein | 0.3321 | Non-antigenic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.A.R.; Rahman, H.; Qasim, M.; Akram, M.S.; Saygideger, Y.; Puspita, N.; Saygıdeğer Demir, B.; Alzahrani, K.J.; Rehman, M.F.u.; Alzahrani, F.M.; et al. Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan. Medicina 2022, 58, 1168. https://doi.org/10.3390/medicina58091168
Shah SAR, Rahman H, Qasim M, Akram MS, Saygideger Y, Puspita N, Saygıdeğer Demir B, Alzahrani KJ, Rehman MFu, Alzahrani FM, et al. Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan. Medicina. 2022; 58(9):1168. https://doi.org/10.3390/medicina58091168
Chicago/Turabian StyleShah, Syed Ali Raza, Hazir Rahman, Muhammad Qasim, Muhammad Safwan Akram, Yasemin Saygideger, Nanda Puspita, Burcu Saygıdeğer Demir, Khalid J. Alzahrani, Muhammad Fayyaz ur Rehman, Fuad M. Alzahrani, and et al. 2022. "Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan" Medicina 58, no. 9: 1168. https://doi.org/10.3390/medicina58091168
APA StyleShah, S. A. R., Rahman, H., Qasim, M., Akram, M. S., Saygideger, Y., Puspita, N., Saygıdeğer Demir, B., Alzahrani, K. J., Rehman, M. F. u., Alzahrani, F. M., & Alblihd, M. A. (2022). Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan. Medicina, 58(9), 1168. https://doi.org/10.3390/medicina58091168