Sepsis-Associated Acute Kidney Injury: Where Are We Now?
Abstract
:1. Introduction
2. Methodology of Literature Search
3. Pathogenesis of SA-AKI
3.1. The Roles of Inflammation and Metabolic Reprogramming
3.2. The Role of Cell Death
3.2.1. Apoptosis
3.2.2. Necroptosis
3.2.3. Pyroptosis
3.2.4. Ferroptosis
3.3. Autophagy and Efferocytosis
3.4. The Role of Hemodynamic Changes
4. Biomarkers in SA-AKI
Biomarkers | Material | Features | References |
---|---|---|---|
Circulating | |||
Creatinine | Serum/Plasma | Byproduct of creatine phosphate catabolism, inverse correlation with GFR Most used biomarker of kidney function Creatinine is used in the definition and staging of AKI | [5] |
Cystatin C | Serum/Plasma | Inverse correlation with GFR, shorter plasma half-life than creatinine; their combination likely reflects GFR more accurately | [5] |
Proenkephalin A (penKiD) | Serum/Plasma | Stable peptide of the enkephalin family, inverse correlation with GFR | [44,45,46] |
Interleukin-6 | Serum/Plasma urine | Secreted by immune cells (macrophages/monocytes) and possibly renal resident cells under certain conditions, elevated early in SA-AKI | [5] |
Interleukin-8 | Serum/Plasma | Potent neutrophil chemoattractant, produced by, among others, glomerular, tubular and interstitial renal cells, elevated early in SA-AKI | [5] |
Osteoprotegerin | Serum/Plasma | Elevated in the CKD and AKI of various causes, including SA-AKI | [47] |
Galectin-3 | Serum/Plasma | Elevated in AKI, including early increases in SA-AKI | [49,50] |
Presepsin | Serum/Plasma | Increases in serum/plasma are predictive of AKI in patients with sepsis Increase in serum during the early stages of sepsis (≈2 h after bacterial infections) Presepsin differentiates sepsis from surgical operations, trauma and burn injuries | [48] |
Urinary | |||
Urine output (UO) | Urine | A cutoff of UO < 0.5 mL/kg/h for 6 h is implemented in the Kidney Disease: Improving Global Outcomes (KDIGO) diagnostic criteria for AKI; the trajectory of UO within 24 h of sepsis onset is associated with the risk of SA-AKI | [4] |
Dipstick albumin | Urine | Wide and practical screening tool for the assessment of kidney disease | [5] |
Microscopy | Urine | Wide, practical but not validated test used to differentiate the etiology of kidney disease A non-validated score based on the number of renal tubular epithelial cells and/or the granular casts per high-powered field has been suggested for SA-AKI Urine microscopy is subjected to inter-observer variability | [4,5] |
Kidney Injury Molecule-1 (KIM-1) | Urine | Type 1 transmembrane protein, increased levels in urine in proximal tubular injuries, including SA-AKI | [51,52,53,54] |
Neutrophil gelatinase-associated lipocalin (NGAL) | Urine | Released from neutrophil granules as well as renal tubular stress after injury, increased urine concentrations in SA-AKI | [51,52,53,54] |
Chemokine (C-C motif) ligand 14 (CCL-14) | Urine | Chemokine produced by renal tubular cells in AKI, urinary levels are predictive of persistent SA-AKI | [51,52,53,54] |
[TIMP-2] × [IGFBP7] | Urine | The product of cell-cycle arrest biomarkers Tissue inhibitor of metalloproteinases-2 and Insulin-like growth factor binding protein 7 ([TIMP-2] × [IGFBP7]) predicts SA-AKI and 30-day mortality in affected patients | [5,51,52,53,54] |
Prostaglandin endoperoxide Synthase 2/Cyclooxygenase-2 (PTGS2) | Urine | Biomarker of ferroptosis, increased in urine during SA-AKI | [51,52,53,54] |
Soluble triggering receptor expressed by myeloid cells 1 (sTREM-1) | Urine | Elevated in urine early in the course of SA-AKI, potentially as a consequence of the increased local production by renal resident cells | [51,52,53,54] |
L-type fatty acid binding protein (L-FABP) | Urine | Increases in urine precede serum creatinine elevations during SA-AKI | [5,55] |
miR-370-3p miR-495-3p | Urine | In patients with sepsis, the decreased expressions of microRNAs miR-370-3p and miR-495-3p distinguish those with SA-AKI and are associated with poorer prognoses | [59] |
Circular RNA particles | Urine | Several circular RNAs undergo up- (e.g., hsa_circ_0040994/circ-FANCA) or down-regulation (e.g., hsa_circ_0068,888) in SA-AKI | [60] |
Molecular | |||
AFM gene expression | Kidney tissue, monocytes | Decreased expression and negative correlation with monocyte infiltration | [57] |
Differentially expressed genes in kidney tissue | Kidney tissue | Differential expression of several hub genes (Hmox1, Spp1, Socs3, Mapk14, Lcn2, Cxcl1 and Cxcl12) in a mouse model of SA-AKI | [57,58] |
Post-transcriptional mRNA modifications | Kidney tissue | m6A RNA methylation involved in SA-AKI in a mouse model | [58] |
5. Prevention of SA-AKI
6. Therapeutics of SA-AKI: Current Knowledge and Future Perspectives
Research/Year | Population, Type of Study | Treatment | Main Findings | Remarks |
---|---|---|---|---|
Howell et al., 2013 [94] | C57Bl/6 mice 8 ws (young) and 45 ws (adult) old were administered LPS 1.5 mg/Kg ip. to induce endotoxemia | Temsirolimus 5 mg/Kg iv. (Inhibitor of mTOR) | Autophagy was documented in this SA-AKI animal model. |
|
Sunahara et al., 2018 [95] | C57Bl/6 male mice 6–8 ws old and microtubule-associated protein light chain 3 (LC3) transgenic mice (C57BL/6 background) 6–8 ws old underwent CLP procedure | Rapamycin 10 mg/Kg ip. (Inhibitor of mTOR) | Autophagy was related to an improvement in the histological findings in terms of tubular epithelial injury in mice. |
|
Jia et al., 2019 [89] | Male Sprague–Dawley rats underwent CLP procedure | ALA 200 mg/Kg via oral gavage | ALA increased the expressions of Atg5, Atg7 and Beclin1, i.e., autophagy-related genes. |
|
Gao et al., 2020 [87] | Adult male and female C57BL/6 mice underwent CLP procedure | PD 30 mg/Kg iv | PD induced the translocation of Parkin from the cytoplasm to the mitochondria in SA-AKI mice. |
|
Liu et al., 2020 [96] | Mice were administered LPS 10 mg/Kg ip. to induce SA-AKI | Procyanidin B2 | Procyanidin B2 improved autophagy by increasing the nuclear translocation of the transcription factor NRF2. |
|
Miao et al., 2020 [97] | Male C57BL/6 8–10 ws old were administered LPS 10 mg/Kg ip. |
SW033291, 10 mg/Kg ip.
(Small-molecule inhibitor of 15-PGDH) | The inhibition of 15-PGDH resulted in reduced expressions of Fas, caspase-3 and caspase-8. |
|
Yang et al., 2020 [98] | Wistar rats were administered LPS 10 mg/Kg ip. | DEX 30 μg/Kg ip. | DEX had nephro-protective effects by means of the AMPK/mTOR pathway. The administration of atipamezole and methyladenine reversed the beneficial effects of DEX. |
|
Feng et al., 2020 [99] | Male Sprague–Dawley rats 8 ws old were administered LPS to induce SA-AKI | HUCBMNC in a final concentration of 3 × 107 MNCs/mL that mainly expressed CD3, CD38 and CD5 positivity | The activation of the NRF2 pathway decreased inflammation and ameliorated autophagy. |
|
Zhao et al., 2020 [100] | Male adult Sprague–Dawley rats were administered 10 mg/Kg LPS ip. | DEX 30 μg/Kg ip. |
DEX improved SA-AKI.
The administration of atipamezole and MA reversed the beneficial effects of DEX. |
|
Guo et al., 2021 [101] | Female Sprague–Dawley rats 12 ws old underwent CLP procedure | BMSCs (5 × 106 cells/mL) | BMSCs resulted in improvement in SA-AKI. |
|
Tan et al., 2021 [102] | 60 BALB/c male mice 6–8 ws old underwent CLP procedure | 2-DG 2 g/Kg ip (Inhibitor of aerobic glycolysis) | 2-DG resulted in the amelioration of SA-AKI. |
|
Li et al., 2022 [103] | 140 male C57BL/6 mice 8 ws old were administered LPS 10 mg/Kg ip. | H2S (NaHS) 0.8 mg/Kg ip. | Exogenous H2S improved SA-AKI. |
|
Li et al., 2022 [104] | Sprague–Dawley male adult rats | Ulinastatin 5000 U/Kg iv (Urinary trypsin inhibitor) | Unilastatin improved SA-AKI. |
|
Yu et al., 2022 [105] | Mice model of SA-AKI were adminstered 10 mg/Kg of LPS ip. | Oral administration of NF-κB inhibitor 270 | Inhibitor 270 resulted in an improvement of SA-AKI. |
|
Luo et al., 2023 [106] | Male C57BL/6 mice 6–8 ws old underwent CLP procedure | MSCs 1 × 106 cells iv + Gal-9 (100 μg/mouse) iv)+ Soluble Tim-3 (100 μg/mouse) iv | MSCs altered the Th1/Th2 ratio and achieved cellular homeostasis. However, when soluble Tim-3 was administered, it resulted in blocking the Gal-9/Tim-3 axis and, thus, in increased mortality from SA-AKI. |
|
Zhang et al., 2023 [107] | Male C57BL/6 mice underwent CLP procedure | Exogenous H2S (GYY4137) administered to SA-AKI mice | Exogenous H2S improved SA-AKI by inhibiting ferroptosis. |
|
Luo et al., 2023 [108] | C57BL/8 mice underwent CLP procedure | MSCs × 106 cells iv + Gal-9 (100μg/mouse) iv)+ Soluble Tim-3 (100μg/mouse) | MSCs inhibited Th17, wich promoted the expansion of Tregs. |
|
Yang et al., 2024 [109] | Mice model of SA-AKI were injected with LPS ip. | PCE was administered to SA-AKI mice | PCE resulted in a reduction in the production of inflammatory cytokines. |
|
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef]
- Mellhammar, L.; Wollter, E.; Dahlberg, J.; Donovan, B.; Olséen, C.J.; Wiking, P.O.; Rose, N.; Schwarzkopf, D.; Friedrich, M.; Fleischmann-Struzek, C.; et al. Estimating Sepsis Incidence Using Administrative Data and Clinical Medical Record Review. JAMA Netw. Open 2023, 6, e2331168. [Google Scholar] [CrossRef]
- Lameire, N.H.; Levin, A.; Kellum, J.A.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C.; Stevens, P.E. Harmonizing acute and chronic kidney disease definition and classification: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021, 100, 516–526. [Google Scholar] [CrossRef]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef]
- Jia, H.M.; Jiang, Y.J.; Zheng, X.; Li, W.; Wang, M.P.; Xi, X.M.; Li, W.X. The attributable mortality of sepsis for acute kidney injury: A propensity-matched analysis based on multicenter prospective cohort study. Ren. Fail. 2023, 45, 2162415. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Q.; Yan, P.; Zhang, N.Y.; Luo, B.; Wang, M.; Deng, Y.H.; Wu, T.; Wu, X.; Liu, Q.; Wang, H.S.; et al. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis. Sci. Rep. 2021, 11, 20269. [Google Scholar] [CrossRef] [PubMed]
- Turgut, F.; Awad, A.S.; Abdel-Rahman, E.M. Acute Kidney Injury: Medical Causes and Pathogenesis. J. Clin. Med. 2023, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, M.; Shang, Y.; Zhang, B.; Zhang, S.; Liu, X.; Cao, P.; Fan, Y.; Tan, K. Apoptosis-related prognostic biomarkers and potential targets for acute kidney injury based on machine learning algorithm and in vivo experiments. Apoptosis 2024, 29, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.M.; Chou, Y.T.; Kan, W.C.; Shiao, C.C. Sepsis and Acute Kidney Injury: A Review Focusing on the Bidirectional Interplay. Int. J. Mol. Sci. 2022, 23, 9159. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Kumar, V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol. 2020, 89, 107087. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.H.; Lee, D.Y.; Kim, H.Y.; Kim, D.H.; Oh, J.S.; Sin, Y.H.; Kim, J.K.; Hwang, S.D. Allograft dysfunction and parenchymal necrosis associated with renal artery stenosis and perigraft hematoma after kidney transplantation. Korean J. Transpl. 2020, 34, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Toro, J.; Manrique-Caballero, C.L.; Gómez, H. Metabolic Reprogramming and Host Tolerance: A Novel Concept to Understand Sepsis-Associated AKI. J. Clin. Med. 2021, 10, 4184. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Deng, J.; Zhou, H.; Tan, W.; Lin, L.; Yang, J. Programmed Cell Death in Sepsis Associated Acute Kidney Injury. Front. Med. (Lausanne) 2022, 9, 883028. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.D.; Goldblum, S.E. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 284, L899–L914. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S.; Segawa, K. Sensing and clearance of apoptotic cells. Curr. Opin. Immunol. 2021, 68, 1–8. [Google Scholar] [CrossRef]
- Galluzzi, L.; Kepp, O.; Chan, F.K.; Kroemer, G. Necroptosis: Mechanisms and Relevance to Disease. Annu. Rev. Pathol. 2017, 12, 103–130. [Google Scholar] [CrossRef]
- Jiao, H.; Wachsmuth, L.; Kumari, S.; Schwarzer, R.; Lin, J.; Eren, R.O.; Fisher, A.; Lane, R.; Young, G.R.; Kassiotis, G.; et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 2020, 580, 391–395. [Google Scholar] [CrossRef]
- Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 2017, 17, 151–164. [Google Scholar] [CrossRef]
- Abu Khweek, A.; Amer, A.O. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol. Rev. 2020, 297, 39–52. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, L.; Li, R.; Dong, W.; Liu, S.; Li, Z.; Liang, H.; Wang, L.; Shi, W.; Malik, A.B.; et al. Caspase-11 Mediates Pyroptosis of Tubular Epithelial Cells and Septic Acute Kidney Injury. Kidney Blood Press. Res. 2019, 44, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yang, Q.; Zhang, Y.; Xu, H.; Ye, Y.; Li, L.; Yang, Y.; Jin, S. Maresin conjugates in tissue regeneration-1 suppresses ferroptosis in septic acute kidney injury. Cell Biosci. 2021, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- von Krusenstiern, A.N.; Robson, R.N.; Qian, N.; Qiu, B.; Hu, F.; Reznik, E.; Smith, N.; Zandkarimi, F.; Estes, V.M.; Dupont, M.; et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 2023, 19, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R.; Jiang, X.; Gu, W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020, 30, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, D.; Choi, M.E. Autophagy in kidney disease: Advances and therapeutic potential. Prog. Mol. Biol. Transl. Sci. 2020, 172, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Meng, L.; Cao, G.K.; Zhao, Y.L.; Zhang, Y. Biological effects of autophagy in mice with sepsis-induced acute kidney injury. Exp. Ther. Med. 2019, 17, 316–322. [Google Scholar] [CrossRef]
- Nguyen, J.A.; Yates, R.M. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front. Immunol. 2021, 12, 636078. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, J.; Shen, M.; Li, X.; Wu, M. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: The underlying mechanisms for renoprotection. Front. Immunol. 2023, 14, 1180866. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, J.; Tian, J.; Virzì, G.M.; Digvijay, K.; Cueto, L.; Yin, Y.; Rosner, M.H.; Ronco, C. Mitochondria in Sepsis-Induced AKI. J. Am. Soc. Nephrol. 2019, 30, 1151–1161. [Google Scholar] [CrossRef]
- Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [PubMed]
- Doran, A.C.; Yurdagul, A., Jr.; Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 2020, 20, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, S.; Goggins, E.; Okusa, M.D. The Pathophysiology of Sepsis-Associated AKI. Clin. J. Am. Soc. Nephrol. 2022, 17, 1050–1069. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Yamaoka, Y.; Morioka, S. Sweeping Up Dying Cells during Tissue Injury. Nephron 2022, 146, 249–252. [Google Scholar] [CrossRef]
- Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. Lancet 2019, 394, 1949–1964. [Google Scholar] [CrossRef]
- Post, E.H.; Kellum, J.A.; Bellomo, R.; Vincent, J.L. Renal perfusion in sepsis: From macro- to microcirculation. Kidney Int. 2017, 91, 45–60. [Google Scholar] [CrossRef]
- Liu, P.; Cai, X.; Zhang, Y.; Li, Y.; Liu, L. The clinical application of ultrasound for acute kidney injury during sepsis-from macroscopic to microscopic renal perfusion perspectives. Ultrasound Med. Biol. 2023, 49, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, L.; Feng, Y.; Yang, J. Comprehensive Management of Blood Pressure in Patients with Septic AKI. J. Clin. Med. 2023, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Holthoff, J.H.; Seely, K.A.; Pathak, E.; Spencer, H.J., 3rd; Gokden, N.; Mayeux, P.R. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am. J. Pathol. 2012, 180, 505–516. [Google Scholar] [CrossRef] [PubMed]
- von Groote, T.; Albert, F.; Meersch, M.; Koch, R.; Gerss, J.; Arlt, B.; Sadjadi, M.; Porschen, C.; Pickkers, P.; Zarbock, A. Evaluation of Proenkephalin A 119-159 for liberation from renal replacement therapy: An external, multicenter pilot study in critically ill patients with acute kidney injury. Crit. Care 2023, 27, 276. [Google Scholar] [CrossRef] [PubMed]
- Frigyesi, A.; Boström, L.; Lengquist, M.; Johnsson, P.; Lundberg, O.H.M.; Spångfors, M.; Annborn, M.; Cronberg, T.; Nielsen, N.; Levin, H.; et al. Plasma proenkephalin A 119-159 on intensive care unit admission is a predictor of organ failure and 30-day mortality. Intensive Care Med. Exp. 2021, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Hollinger, A.; Wittebole, X.; François, B.; Pickkers, P.; Antonelli, M.; Gayat, E.; Chousterman, B.G.; Lascarrou, J.B.; Dugernier, T.; Di Somma, S.; et al. Proenkephalin A 119-159 (Penkid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int. Rep. 2018, 3, 1424–1433. [Google Scholar] [CrossRef]
- Schaalan, M.; Mohamed, W. Predictive ability of circulating osteoprotegerin as a novel biomarker for early detection of acute kidney injury induced by sepsis. Eur. Cytokine Netw. 2017, 28, 52–62. [Google Scholar] [CrossRef]
- Han, S.; Kim, M.J.; Ko, H.J.; Lee, E.J.; Kim, H.R.; Jeon, J.W.; Ham, Y.R.; Na, K.R.; Lee, K.W.; Lee, S.I.; et al. Diagnostic and Prognostic Roles of C-Reactive Protein, Procalcitonin, and Presepsin in Acute Kidney Injury Patients Initiating Continuous Renal Replacement Therapy. Diagnostics 2023, 13, 777. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, H.; Eliaz, A.; Kellum, J.A.; Peng, Z.; Eliaz, I. Galectin-3 in septic acute kidney injury: A translational study. Crit. Care 2021, 25, 109. [Google Scholar] [CrossRef]
- Wang, F.; Ye, J.; Zhu, W.; Ge, R.; Hu, C.; Qian, Y.; Li, Y.; Peng, Z. Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury. Inflammation 2024, 47, 454–468. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, P.; Zhang, J.; Tian, R.; Jin, W.; Xie, H.; Du, J.; Zhou, Z.; Wang, R. Biomarkers for the diagnosis of sepsis-associated acute kidney injury: Systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 4159–4173. [Google Scholar] [CrossRef]
- Honore, P.M.; Nguyen, H.B.; Gong, M.; Chawla, L.S.; Bagshaw, S.M.; Artigas, A.; Shi, J.; Joannes-Boyau, O.; Vincent, J.L.; Kellum, J.A. Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor-Binding Protein 7 for Risk Stratification of Acute Kidney Injury in Patients With Sepsis. Crit. Care Med. 2016, 44, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Liu, X.; Wu, L.; Li, X.; Wang, K.; Wang, X.; Zhou, X.; Long, Y.; Liu, D.; Xie, L.; et al. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-κB pathway. Int. J. Med. Sci. 2021, 18, 8–17. [Google Scholar] [CrossRef]
- Kellum, J.A.; Artigas, A.; Gunnerson, K.J.; Honore, P.M.; Kampf, J.P.; Kwan, T.; McPherson, P.; Nguyen, H.B.; Rimmelé, T.; Shapiro, N.I.; et al. Use of Biomarkers to Identify Acute Kidney Injury to Help Detect Sepsis in Patients With Infection. Crit. Care Med. 2021, 49, e360–e368. [Google Scholar] [CrossRef]
- Kamijo-Ikemori, A.; Ichikawa, D.; Matsui, K.; Yokoyama, T.; Sugaya, T.; Kimura, K. [Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan]. Rinsho Byori 2013, 61, 635–640. [Google Scholar] [PubMed]
- Yang, J.J.; Wu, B.B.; Han, F.; Chen, J.H.; Yang, Y. Gene expression profiling of sepsis-associated acute kidney injury. Exp. Ther. Med. 2020, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Fan, Y.; Cheng, J.; Deng, Y.; Zhang, X.; Chen, Y.; Jing, H.; Li, W.; Liu, P.; Xie, J.; et al. AFM negatively regulates the infiltration of monocytes to mediate sepsis-associated acute kidney injury. Front. Immunol. 2023, 14, 1049536. [Google Scholar] [CrossRef]
- Liu, B.; Ao, S.; Tan, F.; Ma, W.; Liu, H.; Liang, H.; Yang, X.; Chi, X. Transcriptomic analysis and laboratory experiments reveal potential critical genes and regulatory mechanisms in sepsis-associated acute kidney injury. Ann. Transl. Med. 2022, 10, 737. [Google Scholar] [CrossRef]
- Ma, W.; Miao, X.; Xia, F.; Ruan, C.; Tao, D.; Li, B. The Potential of miR-370-3p and miR-495-3p Serving as Biomarkers for Sepsis-Associated Acute Kidney Injury. Comput. Math. Methods Med. 2022, 2022, 2439509. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wu, J.; Chen, Z. Regulatory networks of circRNA- centred ceRNAs in sepsis-induced acute kidney injury. Epigenetics 2023, 18, 2278960. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Li, Y.; Shi, X.; Zhu, H.; Chen, L. Multidimensional Landscape of SA-AKI Revealed by Integrated Proteomics and Metabolomics Analysis. Biomolecules 2023, 13, 1329. [Google Scholar] [CrossRef]
- Qiao, J.; Cui, L. Multi-Omics Techniques Make it Possible to Analyze Sepsis-Associated Acute Kidney Injury Comprehensively. Front. Immunol. 2022, 13, 905601. [Google Scholar] [CrossRef]
- Luo, X.Q.; Yan, P.; Duan, S.B.; Kang, Y.X.; Deng, Y.H.; Liu, Q.; Wu, T.; Wu, X. Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury. Front. Med. (Lausanne) 2022, 9, 853102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, R.; Zhao, W.; Shi, R.; Zhu, Y.; Wang, Z.; Pan, H.; Wang, D. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury. Sci. Rep. 2023, 13, 5223. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Su, T.; Huang, L.; Feng, L.H.; Liao, T. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. BMC Nephrol. 2021, 22, 173. [Google Scholar] [CrossRef]
- White, K.C.; Serpa-Neto, A.; Hurford, R.; Clement, P.; Laupland, K.B.; See, E.; McCullough, J.; White, H.; Shekar, K.; Tabah, A.; et al. Sepsis-associated acute kidney injury in the intensive care unit: Incidence, patient characteristics, timing, trajectory, treatment, and associated outcomes. A multicenter, observational study. Intensive Care Med. 2023, 49, 1079–1089. [Google Scholar] [CrossRef]
- Eskesen, T.G.; Wetterslev, M.; Perner, A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016, 42, 324–332. [Google Scholar] [CrossRef]
- Garzotto, F.; Ostermann, M.; Martín-Langerwerf, D.; Sánchez-Sánchez, M.; Teng, J.; Robert, R.; Marinho, A.; Herrera-Gutierrez, M.E.; Mao, H.J.; Benavente, D.; et al. The Dose Response Multicentre Investigation on Fluid Assessment (DoReMIFA) in critically ill patients. Crit. Care 2016, 20, 196. [Google Scholar] [CrossRef]
- Zampieri, F.G.; Bagshaw, S.M.; Semler, M.W. Fluid Therapy for Critically Ill Adults With Sepsis: A Review. JAMA 2023, 329, 1967–1980. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Bauer, M.; Nierhaus, A.; Kluge, S.; Schumacher, U.; Putensen, C.; Fichtner, F.; Petros, S.; Scheer, C.; Jaschinski, U.; et al. Randomized controlled multicentre study of albumin replacement therapy in septic shock (ARISS): Protocol for a randomized controlled trial. Trials 2020, 21, 1002. [Google Scholar] [CrossRef]
- Lai, C.F.; Liu, J.H.; Tseng, L.J.; Tsao, C.H.; Chou, N.K.; Lin, S.L.; Chen, Y.M.; Wu, V.C. Unsupervised clustering identifies sub-phenotypes and reveals novel outcome predictors in patients with dialysis-requiring sepsis-associated acute kidney injury. Ann. Med. 2023, 55, 2197290. [Google Scholar] [CrossRef]
- Peng, J.; Tang, R.; Yu, Q.; Wang, D.; Qi, D. No sex differences in the incidence, risk factors and clinical impact of acute kidney injury in critically ill patients with sepsis. Front. Immunol. 2022, 13, 895018. [Google Scholar] [CrossRef] [PubMed]
- Monard, C.; Bianchi, N.; Kelevina, T.; Altarelli, M.; Schneider, A. Epidemiology and outcomes of early versus late septic acute kidney injury in critically ill patients: A retrospective cohort study. Anaesth. Crit. Care Pain. Med. 2024, 43, 101332. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Zhu, B.; Li, W.; Jiang, Q.; Zuo, Y.; Wen, J.; He, Y.; Xi, X.; Jiang, L. The effects of timing onset and progression of AKI on the clinical outcomes in AKI patients with sepsis: A prospective multicenter cohort study. Ren. Fail. 2023, 45, 2138433. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, L.; Jiang, S.; Huang, Y.; Leng, Y.; Gao, C. Timely renal replacement therapy linked to better outcome in patients with sepsis-associated acute kidney injury. J. Intensive Med. 2022, 2, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Agapito Fonseca, J.; Gameiro, J.; Marques, F.; Lopes, J.A. Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury. J. Clin. Med. 2020, 9, 1413. [Google Scholar] [CrossRef]
- Lee, W.Y.; Kim, H.J.; Kim, E.Y. Impact of polymyxin B hemoperfusion therapy on high endotoxin activity level patients after successful infection source control: A prospective cohort study. Sci. Rep. 2021, 11, 24132. [Google Scholar] [CrossRef]
- Iba, T.; Klein, D.J. The wind changed direction and the big river still flows: From EUPHRATES to TIGRIS. J. Intensive Care 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Bellomo, R. Hemoperfusion: Technical aspects and state of the art. Crit. Care 2022, 26, 135. [Google Scholar] [CrossRef]
- König, C.; Röhr, A.C.; Frey, O.R.; Brinkmann, A.; Roberts, J.A.; Wichmann, D.; Braune, S.; Kluge, S.; Nierhaus, A. In vitro removal of anti-infective agents by a novel cytokine adsorbent system. Int. J. Artif. Organs 2019, 42, 57–64. [Google Scholar] [CrossRef]
- Rhee, H.; Jang, G.S.; Han, M.; Park, I.S.; Kim, I.Y.; Song, S.H.; Seong, E.Y.; Lee, D.W.; Lee, S.B.; Kwak, I.S. The role of the specialized team in the operation of continuous renal replacement therapy: A single-center experience. BMC Nephrol. 2017, 18, 332. [Google Scholar] [CrossRef] [PubMed]
- Joannes-Boyau, O.; Velly, L.; Ichai, C. Optimizing continuous renal replacement therapy in the ICU: A team strategy. Curr. Opin. Crit. Care 2018, 24, 476–482. [Google Scholar] [CrossRef]
- Neyra, J.A.; Goldstein, S.L. Optimizing renal replacement therapy deliverables through multidisciplinary work in the intensive care unit. Clin. Nephrol. 2018, 90, 1–5. [Google Scholar] [CrossRef]
- Garcia, B.; Zarbock, A.; Bellomo, R.; Legrand, M. The role of renin-angiotensin system in sepsis-associated acute kidney injury: Mechanisms and therapeutic implications. Curr. Opin. Crit. Care 2023, 29, 607–613. [Google Scholar] [CrossRef]
- Garcia, B.; Zarbock, A.; Bellomo, R.; Legrand, M. The alternative renin-angiotensin system in critically ill patients: Pathophysiology and therapeutic implications. Crit. Care 2023, 27, 453. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Fernandes, T.D.; Bijol, V.; Abraham, M.N.; Lehman, J.R.; Taylor, M.D.; Capone, C.; Yaipan, O.; Bellomo, R.; Deutschman, C.S. Impaired angiotensin II type 1 receptor signaling contributes to sepsis-induced acute kidney injury. Kidney Int. 2021, 99, 148–160. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, X.; Li, Y.; Li, G.; Lin, X.; Ai, C.; Cao, Y.; Li, T.; Lin, B. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J. Transl. Med. 2020, 18, 114. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.D.; Hu, B.C.; Shao, X.P.; Hong, J.; Zheng, Y.; Zhang, R.; Shao, Z.Q.; Liu, J.Q.; Yang, X.H.; Sun, R.H.; et al. Ascorbate uptake enables tubular mitophagy to prevent septic AKI by PINK1-PARK2 axis. Biochem. Biophys. Res. Commun. 2021, 554, 158–165. [Google Scholar] [CrossRef]
- Jia, J.; Gong, X.; Zhao, Y.; Yang, Z.; Ji, K.; Luan, T.; Zang, B.; Li, G. Autophagy Enhancing Contributes to the Organ Protective Effect of Alpha-Lipoic Acid in Septic Rats. Front. Immunol. 2019, 10, 1491. [Google Scholar] [CrossRef]
- Guo, G.; Wang, Y.; Kou, W.; Gan, H. Identifying the molecular mechanisms of sepsis-associated acute kidney injury and predicting potential drugs. Front. Genet. 2022, 13, 1062293. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Chen, C.A.; Chang, J.M.; Chen, H.C. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes. J. Biochem. 2015, 158, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Charlson Comorbidity Index Calculator. Available online: http://omnicalculator.com (accessed on 16 January 2024).
- Elias, E.E.; Lyons, B.; Muruve, D.A. Gasdermins and pyroptosis in the kidney. Nat. Rev. Nephrol. 2023, 19, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Howell, G.M.; Gomez, H.; Collage, R.D.; Loughran, P.; Zhang, X.; Escobar, D.A.; Billiar, T.R.; Zuckerbraun, B.S.; Rosengart, M.R. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS ONE 2013, 8, e69520. [Google Scholar] [CrossRef] [PubMed]
- Sunahara, S.; Watanabe, E.; Hatano, M.; Swanson, P.E.; Oami, T.; Fujimura, L.; Teratake, Y.; Shimazui, T.; Lee, C.; Oda, S. Influence of autophagy on acute kidney injury in a murine cecal ligation and puncture sepsis model. Sci. Rep. 2018, 8, 1050. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Yang, C.; Liu, Z.J.; Su, H.Y.; Zhang, W.H.; Pan, Q.; Liu, H.F. Protection of procyanidin B2 on mitochondrial dynamics in sepsis associated acute kidney injury via promoting Nrf2 nuclear translocation. Aging (Albany N.Y.) 2020, 12, 15638–15655. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Lv, C.; Liu, Y.; Zhao, J.; Li, T.; Wang, C.; Xu, Y.; Wang, X.; Xiao, X.; Zhang, H. Pharmacologic Blockade of 15-PGDH Protects Against Acute Renal Injury Induced by LPS in Mice. Front. Physiol. 2020, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Feng, X.; Zhao, Y.; Zhang, H.; Cui, H.; Wei, M.; Yang, H.; Fan, H. Dexmedetomidine Enhances Autophagy via α2-AR/AMPK/mTOR Pathway to Inhibit the Activation of NLRP3 Inflammasome and Subsequently Alleviates Lipopolysaccharide-Induced Acute Kidney Injury. Front. Pharmacol. 2020, 11, 790. [Google Scholar] [CrossRef]
- Feng, L.X.; Zhao, F.; Liu, Q.; Peng, J.C.; Duan, X.J.; Yan, P.; Wu, X.; Wang, H.S.; Deng, Y.H.; Duan, S.B. Role of Nrf2 in Lipopolysaccharide-Induced Acute Kidney Injury: Protection by Human Umbilical Cord Blood Mononuclear Cells. Oxid. Med. Cell Longev. 2020, 2020, 6123459. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, X.; Li, B.; Sha, J.; Wang, C.; Yang, T.; Cui, H.; Fan, H. Dexmedetomidine Protects Against Lipopolysaccharide-Induced Acute Kidney Injury by Enhancing Autophagy Through Inhibition of the PI3K/AKT/mTOR Pathway. Front. Pharmacol. 2020, 11, 128. [Google Scholar] [CrossRef]
- Guo, J.; Wang, R.; Liu, D. Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Sepsis-Induced Acute Kidney Injury by Promoting Mitophagy of Renal Tubular Epithelial Cells via the SIRT1/Parkin Axis. Front. Endocrinol. (Lausanne) 2021, 12, 639165. [Google Scholar] [CrossRef]
- Tan, C.; Gu, J.; Li, T.; Chen, H.; Liu, K.; Liu, M.; Zhang, H.; Xiao, X. Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK-regulated autophagy. Int. J. Mol. Med. 2021, 47, 4852. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, J.; Miao, S.; Chen, Y.; Xu, Y.; Liu, Y. Protective effect of H(2)S on LPS-induced AKI by promoting autophagy. Mol. Med. Rep. 2022, 25, 12612. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ji, X.; Liu, J.; Guo, X.; Pang, R.; Zhuang, H.; Dong, L.; Duan, M.; Li, A. Ulinastatin Improves Renal Microcirculation by Protecting Endothelial Cells and Inhibiting Autophagy in a Septic Rat Model. Kidney Blood Press. Res. 2022, 47, 256–269. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Li, X.Q.; Hu, W.P.; Cu, S.C.; Dai, J.J.; Gao, Y.N.; Zhang, Y.T.; Bai, X.Y.; Shi, D.Y. Self-developed NF-κB inhibitor 270 protects against LPS-induced acute kidney injury and lung injury through improving inflammation. Biomed. Pharmacother. 2022, 147, 112615. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Luo, F.; Che, L.; Zhang, H.; Zhao, L.; Zhang, W.; Man, X.; Bu, Q.; Luan, H.; Zhou, B.; et al. Mesenchymal stem cells protect against sepsis-associated acute kidney injury by inducing Gal-9/Tim-3 to remodel immune homeostasis. Ren. Fail. 2023, 45, 2187229. [Google Scholar] [CrossRef]
- Zhang, L.; Rao, J.; Liu, X.; Wang, X.; Wang, C.; Fu, S.; Xiao, J. Attenuation of Sepsis-Induced Acute Kidney Injury by Exogenous H(2)S via Inhibition of Ferroptosis. Molecules 2023, 28, 4770. [Google Scholar] [CrossRef]
- Luo, C.; Luo, F.; Man, X.; Liu, X.; Zhao, L.; Che, L.; Zhang, W.; Guo, J.; Cai, S.; Wang, D.; et al. Mesenchymal Stem Cells Attenuate Sepsis-associated Acute Kidney Injury by Changing the Balance of Th17 cells/Tregs via Gal-9/Tim-3. Curr. Stem Cell Res. Ther. 2023, 18, 540–550. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Tu, J.; Sun, Y.; Zhang, C.; Qiu, Z.; Xiao, H. Polygonum cuspidatum Sieb. et Zucc. Extracts improve sepsis-associated acute kidney injury by inhibiting NF-κB-mediated inflammation and pyroptosis. J. Ethnopharmacol. 2024, 319, 117101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kounatidis, D.; Vallianou, N.G.; Psallida, S.; Panagopoulos, F.; Margellou, E.; Tsilingiris, D.; Karampela, I.; Stratigou, T.; Dalamaga, M. Sepsis-Associated Acute Kidney Injury: Where Are We Now? Medicina 2024, 60, 434. https://doi.org/10.3390/medicina60030434
Kounatidis D, Vallianou NG, Psallida S, Panagopoulos F, Margellou E, Tsilingiris D, Karampela I, Stratigou T, Dalamaga M. Sepsis-Associated Acute Kidney Injury: Where Are We Now? Medicina. 2024; 60(3):434. https://doi.org/10.3390/medicina60030434
Chicago/Turabian StyleKounatidis, Dimitris, Natalia G. Vallianou, Sotiria Psallida, Fotis Panagopoulos, Evangelia Margellou, Dimitrios Tsilingiris, Irene Karampela, Theodora Stratigou, and Maria Dalamaga. 2024. "Sepsis-Associated Acute Kidney Injury: Where Are We Now?" Medicina 60, no. 3: 434. https://doi.org/10.3390/medicina60030434