The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
- At the beginning of the swimming season (BS) (in October):
- ∘
- Before swimming in cold water (baseline) (BS-0);
- ∘
- 30 min after a bath in cold water (BS-30);
- ∘
- 24 h after a cold-water bath (BS-24).
- At the end of the swimming season (ES) (in April):
- ∘
- Before swimming in cold water (baseline) (ES-0);
- ∘
- 30 min after a bath in cold water (ES-30);
- ∘
- 24 h after a cold-water bath (ES-24).
2.3. Determination of the Activity of Antioxidant Enzymes in Erythrocytes
2.4. Determination of TBARS and CD Concentration in Erythrocytes and Blood Plasma
2.5. Determination of Vitamin E and A Concentration in Blood Plasma
2.6. Determination of the Concentration of 8-iso-PGF2α and 4-Hydroxynonenal in Blood Serum
2.7. Statistical Analysis
3. Results
3.1. The Concentration of Lipid Peroxidation Products Increases in the Blood after Cold-Water Baths, but Regular Winter Swimming Attenuates This Effect
3.2. Winter Swimming Stimulates the Erythrocytic Activity of Antioxidant Enzymes, but Has No Effect on the Blood Plasma Concentration of Vitamins A and E
4. Discussion
4.1. Cold-Water Baths at the Beginning of the Winter Swimming Season Stimulate Lipid Peroxidation Processes
4.2. Regular Winter Swimming Diminishes the Stimulatory Effect of Cold-Water Baths on Lipid Peroxidation Processes
4.3. Winter Swimming Stimulates Selectively the Activity of Antioxidant Enzymes in Erythrocytes, but Has No Effect on the Concentration of Vitamins A and E in the Blood Plasma
4.4. Regular Winter Swimming Improves Oxidant–Antioxidant Balance, Including Weakened Lipid Peroxidation and Increased Activity of SOD and GPx due to Adaptive Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brahimi-Horn, M.C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett. 2007, 581, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–725S. [Google Scholar] [CrossRef] [Green Version]
- Toyokuni, S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch. Biochem. Biophys. 2016, 595, 46–49. [Google Scholar] [CrossRef]
- Herasymchuk, N. 8-isoprostane as the main marker of oxidative stress. Zaporozhye Med. J. 2018, 20, 853–859. [Google Scholar] [CrossRef]
- Yagi, K. Lipid peroxides and human diseases. Chem. Phys. Lipids 1987, 45, 337–351. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med. Cell Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress. Sport. Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Tokarz, A.; Jelińska, M.; Ozga, A. Izoprostany-nowe biomarkery lipidowej peroksydacji in vivo. Biul. Wydz. Farm. AMW 2004, 2, 10–17. [Google Scholar] [CrossRef]
- Poli, G.; Schaur, J.R. 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000, 50, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D. Regulation of antioxidant enzymes. FASEB J. 1992, 6, 2675–2683. [Google Scholar] [CrossRef]
- Gutteridge, J. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Boraczuński, T.; Boraczyński, M.; Szewczyk-Golec, K.; Sutkowy, P.; Wesołowski, R.; Budek, M.; Woźniak, A. The influence of ambient temperature changes on the indicators of inflammation and oxidative damage in blood after submaximal exercise. Antioxidants 2022, 11, 2445. [Google Scholar] [CrossRef] [PubMed]
- Launay, J.C.; Savourey, G. Cold adaptations. Ind. Health 2009, 47, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Eimonte, M.; Eimantas, N.; Baranauskiene, N.; Solianik, R.; Brazaitis, M. Kinetics of lipid indicators in response to short-and long-duration whole-body, cold-water immersion. Cryobiology 2022, 109, 62–71. [Google Scholar] [CrossRef]
- Chung, N.; Park, J.; Lim, K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J. Exerc. Nutr. Biochem. 2017, 21, 39–47. [Google Scholar] [CrossRef]
- Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006, 127, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Beers, R.F., Jr.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Meth Enzymol; Elsevier: Amsterdam, The Netherlands, 1978; Volume 52, pp. 302–310. [Google Scholar]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Sergent, O.; Morel, I.; Cogrel, P.; Chevanne, M.; Pasdeloup, N.; Brissot, P.; Lescoat, G.; Cillard, P.; Cillard, J. Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluation of lipid peroxidation in rat hepatocyte cultures. Chem. Phys. Lipids 1993, 65, 133–139. [Google Scholar] [CrossRef]
- Caimi, G.; Canino, B.; Montana, M.; Urso, C.; Calandrino, V.; Presti, R.L.; Hopps, E. Lipid peroxidation, protein oxidation, gelatinases, and their inhibitors in a group of adults with obesity. Horm. Met. Res. 2019, 51, 389–395. [Google Scholar] [CrossRef]
- Siems, W.G.; van Kuijk, F.J.; Maass, R.; Brenke, R. Uric acid and glutathione levels during short-term whole body cold exposure. Free. Radic. Biol. Med. 1994, 16, 299–305. [Google Scholar] [CrossRef]
- Knechtle, B.; Waśkiewicz, Z.; Sousa, C.V.; Hill, L.; Nikolaidis, P.T. Cold water swimming—Benefits and risks: A narrative review. Int. J. Environ. 2020, 17, 8984. [Google Scholar] [CrossRef]
- Manolis, A.S.; Manolis, S.A.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.; Melita, H. Winter swimming: Body hardening and cardiorespiratory protection via sustainable acclimation. Curr. Sport. Med. Rep. 2019, 18, 401–415. [Google Scholar] [CrossRef]
- Young, A.J.; Castellani, J.W. Exertion-induced fatigue and thermoregulation in the cold. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 128, 769–776. [Google Scholar] [CrossRef]
- Bleakley, C.M.; Davison, G.W. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br. J. Sport. Med. 2010, 44, 179–187. [Google Scholar] [CrossRef]
- Ahn, N.; Kim, K. The influence of obesity and ambient temperature on physiological and oxidative responses to submaximal exercise. Biol. Sport. 2014, 31, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bast, A.; Haenen, G.R.; Doelman, C.J. Oxidants and antioxidants: State of the art. Am. J. Med. 1991, 91, 2S–13S. [Google Scholar] [CrossRef] [PubMed]
- Hochachka, P.; Dunn, J. Metabolic arrest: The most effective means of protecting tissues against hypoxia. Prog. Clin. Biol. Res. 1983, 136, 297–309. [Google Scholar] [PubMed]
- Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 1975, 72, 2994–2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaumik, G.; Srivastava, K.; Selvamurthy, W.; Purkayastha, S. The role of free radicals in cold injuries. Int. J. Biometeorol. 1995, 38, 171–175. [Google Scholar] [CrossRef]
- Serhan, C.N.; Broekman, M.J.; Korchak, H.M.; Marcus, A.J.; Weissman, G. Endogenous phospholipid metabolism in stimulated neutrophils differential activation by FMLP and PMA. Biochem. Biophys. Res. Commun. 1982, 107, 951–958. [Google Scholar] [CrossRef]
- Weiss, S.J. Oxygen, ischemia and inflammation. Acta Physiol. Scand. Suppl. 1986, 548, 9–37. [Google Scholar]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Awasthi, Y.C.; Sharma, R.; Cheng, J.; Yang, Y.; Sharma, A.; Singhal, S.S.; Awasthi, S. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol. Asp. Med. 2003, 24, 219–230. [Google Scholar] [CrossRef]
- Tjalkens, R.B.; Cook, L.W.; Petersen, D.R. Formation and export of the glutathione conjugate of 4-hydroxy-2, 3-E-nonenal (4-HNE) in hepatoma cells. Arch. Biochem. Biophys. 1999, 361, 113–119. [Google Scholar] [CrossRef]
- Röth, E.; Marczin, N.; Balatonyi, B.; Ghosh, S.; Kovács, V.; Alotti, N.; Borsiczky, B.; Gasz, B. Effect of a glutathione S-transferase inhibitor on oxidative stress and ischemia-reperfusion-induced apoptotic signalling of cultured cardiomyocytes. Exp. Clin. Cardiol. 2011, 16, 92. [Google Scholar]
- Yang, Y.; Cheng, J.-Z.; Singhal, S.S.; Saini, M.; Pandya, U.; Awasthi, S.; Awasthi, Y.C. Role of glutathione S-transferases in protection against lipid peroxidation: Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem. 2001, 276, 19220–19230. [Google Scholar] [CrossRef] [PubMed]
- Mila-Kierzenkowska, C.; Woźniak, A.; Boraczyński, T.; Szpinda, M.; Woźniak, B.; Jurecka, A.; Szpinda, A. Thermal stress and oxidant-antioxidant balance in experienced and novice winter swimmers. J. Therm. Biol. 2012, 37, 595–601. [Google Scholar] [CrossRef]
- Akhalaya, M.Y.; Platonov, A.G.; Baizhumanov, A.A. Short-term cold exposure improves antioxidant status and general resistance of animals. Bull. Exp. Biol. Med. 2006, 141, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Geyikli, I.; Agcabay, E.; Bagci, C.; Cengiz, B.; Yilmaz, N. Oxidative system and free radicals in rats exposed to cold stress. Int. J. Health Sci. 2008, 1, 45–48. [Google Scholar]
- Dede, S.; Deger, Y.; Meral, I. Effect of short-term hypothermia on lipid peroxidation and antioxidant enzyme activity in rats. J. Vet. Med. A 2002, 49, 286–288. [Google Scholar] [CrossRef]
- Ivanova, D.; Galunska, B.; Bekyarova, G.; Yankova, T. Evidence for free-radical mediated lipid peroxidation in rats after cold-immersion stress. Scr. Sci. Med. 2000, 32, 23–25. [Google Scholar] [CrossRef]
- Park, E.-H.; Choi, S.-W.; Yang, Y.-K. Cold-water immersion promotes antioxidant enzyme activation in elite taekwondo athletes. Appl. Sci 2021, 11, 2855. [Google Scholar] [CrossRef]
- Sutkowy, P.; Woźniak, A.; Boraczyński, T.; Mila-Kierzenkowska, C.; Boraczyński, M. Postexercise impact of ice-cold water bath on the oxidant-antioxidant balance in healthy men. BioMed Res. Int. 2015, 2015, 706141. [Google Scholar] [CrossRef] [Green Version]
- Sutkowy, P.; Woźniak, A.; Boraczyński, T.; Boraczyński, M.; Mila-Kierzenkowska, C. Oxidation-reduction processes in ice swimmers after ice-cold water bath and aerobic exercise. Cryobiology 2015, 70, 273–277. [Google Scholar] [CrossRef]
- Sakarya, M.; Eris, F.; Derbent, A.; Koca, U.; TÜZÜN, S.; Onat, T.; Veral, A.; Moral, A. The antioxidant effects of vitamin C and vitamin E on oxidative stress. Clin. Intensive Care 1999, 10, 245–250. [Google Scholar] [CrossRef]
- Sochor, J.; Ruttkay-Nedecky, B.; Babula, P.; Adam, V.; Hubalek, J.; Kizek, R. Automation of methods for determination of lipid peroxidation. In Lipid Peroxidation; Catala, A., Ed.; InTech Open Science: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, D.P. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. Cryo. Lett. 2007, 28, 137–150. [Google Scholar]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aguilo, A.; Tauler, P.; Fuentespina, E.; Tur, J.A.; Cordova, A.; Pons, A. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol. Behav. 2005, 84, 1–7. [Google Scholar] [CrossRef]
- Joo, C.; Allan, R.; Drust, B.; Close, G.; Jeong, T.; Bartlett, J.; Mawhinney, C.; Louhelainen, J.; Morton, J.; Gregson, W. Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human skeletal muscle. Eur. J. Appl. Physiol. 2016, 116, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Shute, R.J.; Heesch, M.W.; Zak, R.B.; Kreiling, J.L.; Slivka, D.R. Effects of exercise in a cold environment on transcriptional control of PGC-1α. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2018, 314, R850–R857. [Google Scholar] [CrossRef]
- Valle, I.; Álvarez-Barrientos, A.; Arza, E.; Lamas, S.; Monsalve, M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 2005, 66, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.C.; Murphy, M.P.; Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Mila-Kierzenkowska, C.; Szewczyk-Golec, K.; Wesołowski, R.; Sutkowy, P.; Gackowska, M.; Woźniak, A. Stres oksydacyjny u osób korzystających z kąpieli zimowych. In Wpływ Morsowania na Organizm Człowieka; Kraus, H., Woźniak, R., Eds.; Regionalne Stowarzyszenie Turystyczno-Uzdrowiskow: Kołobrzeg, Poland, 2015; pp. 133–152. [Google Scholar]
- Lubkowska, A.; Bryczkowska, I.; Gutowska, I.; Rotter, I.; Marczuk, N.; Baranowska-Bosiacka, I.; Banfi, G. The effects of swimming training in cold water on antioxidant enzyme activity and lipid peroxidation in erythrocytes of male and female aged rats. Int. J. Environ. 2019, 16, 647. [Google Scholar] [CrossRef] [Green Version]
- Lubkowska, A.; Dołęgowska, B.; Szygula, Z.; Bryczkowska, I.; Stańczyk-Dunaj, M.; Sałata, D.; Budkowska, M. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status. Scand. J. Clin. Lab. Investig. 2013, 73, 315–325. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaur, J. Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin. Chim. Acta 2003, 333, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Gomez-Cabrera, M.-C.; Vina, J. Role of free radicals and antioxidant signaling in skeletal muscle health and pathology. Infect. Disord. Drug Targets 2009, 9, 428–444. [Google Scholar] [CrossRef] [PubMed]
- Leppäluoto, J.; Pääkkönen, T.; Korhonen, I.; Hassi, J. Pituitary and autonomic responses to cold exposures in man. Acta Physiol. Scand. 2005, 184, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1005-28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsila, F. Inhibition of heat-and chemical-induced aggregation of various proteins reveals chaperone-like activity of the acute-phase component and serine protease inhibitor human α1-antitrypsin. Biochem. Biophys. Res. Commun. 2010, 393, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Lombardi, G.; Colombini, A.; Melegati, G. Whole-body cryotherapy in athletes. Sport. Med. 2010, 40, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Deligiannis, A.; Karamouzis, M.; Kouidi, E.; Mougios, V.; Kallaras, C. Plasma TSH, T3, T4 and cortisol responses to swimming at varying water temperatures. Br. J. Sport. Med. 1993, 27, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Leeder, J.; Gissane, C.; van Someren, K.; Gregson, W.; Howatson, G. Cold water immersion and recovery from strenuous exercise: A meta-analysis. Br. J. Sport. Med. 2012, 46, 233–240. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Woźniak, A.; Woźniak, B.; Drewa, G.; Rakowski, A.; Jurecka, A.; Rajewski, R. Whole-body cryostimulation in kayaker women: A study of the effect of cryogenic temperatures on oxidative stress after the exercise. J. Sport. Med. Phys. Fit. 2009, 49, 201–207. [Google Scholar]
- White, G.E.; Rhind, S.G.; Wells, G.D. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur. J. Appl. Physiol. 2014, 114, 2353–2367. [Google Scholar] [CrossRef]
- White, G.; Caterini, J.E. Cold water immersion mechanisms for recovery following exercise: Cellular stress and inflammation require closer examination. J. Physiol. 2017, 595, 631–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesslink, R.L., Jr.; D’alesandro, M.M.; Armstrong 3rd, D.W.; Reed, H.L. Human cold air habituation is independent of thyroxine and thyrotropin. J. Appl. Physiol. 1992, 72, 2134–2139. [Google Scholar] [CrossRef] [PubMed]
- Tsibulnikov, S. Maslov, L. Voronkov, N.; Oeltgen, P. Thyroid hormones and the mechanisms of adaptation to cold. Hormones 2020, 19, 329–339. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Parameter | Mean | ±SD |
---|---|---|
BMI [kg/m2] BF [%] FM/FFM [%] MM [%] MM [kg] BM [kg] FM [kg] FFM [kg] TBW [%] TBW [kg] | 23.1 16.1 19.2 42.8 35.1 82.1 13.2 68.9 61.7 50.7 | 1.5 3.9 4.4 3.6 4.1 8.7 4.1 6.7 3.9 4.2 |
Tested Parameter | At the Beginning of the Winter Swimming Season (BS) | At the End of the Winter Swimming Season (ES) | ||||
---|---|---|---|---|---|---|
BS-0 (Baseline) | BS-30 | BS-24 | ES-0 (Baseline) | ES-30 | ES-24 | |
TBARS concentration in erythrocytes [nmol MDA/g Hb] | 30.291 ± 4.3354 | 41.434 ± 4.2794 *** | 58.378 ± 5.8316 *** | 23.936 ± 2.7405 *** | 23.408 ± 3.5105 ▲▲▲ | 22.549 ± 2.8569 ○○○ |
TBARS concentration in blood plasma [nmol MDA/mL] | 0.403 ± 0.0444 | 0.453 ± 0.0679 *** | 0.473 ± 0.0692 *** | 0.375 ± 0.0504 | 0.327 ± 0.0388 ▲▲▲, □□ | 0.212 ± 0.0272 ○○○, □□□, ■■■ |
CD concentration in erythrocytes [Abs./g Hb] | 0.017 ± 0.0033 | 0.034 ± 0.0101 *** | 0.052 ± 0.0104 *** | 0.018 ± 0.0056 | 0.029 ± 0.0065 □□□ | 0.035 ± 0.0141 ○○○, □□□ |
CD concentration in blood plasma [Abs./mL] | 0.026 ± 0.0049 | 0.050 ± 0.0113 *** | 0.079 ± 0.0144 *** | 0.016 ± 0.0035 *** | 0.026 ± 0.0049 ▲▲▲, □□□ | 0.020 ± 0.0056 ○○○, ■ |
8-iso-PGF2α concentration in blood serum [pg/mL] | 1248.813 ± 262.4536 | 1714.269 ± 217.7150 *** | 1557.033 ± 243.1226 *** | 792.015 ± 264.1342 *** | 1027.856 ± 273.3737 ▲▲▲, □□ | 902.232 ± 161.9021 ○○○ |
4-HNE concentration in blood serum [pg/mL] | 10.905 ± 1.8538 | 11.054 ± 1.4700 | 11.031 ± 1.2811 | 8.859 ± 1.0329 *** | 8.900 ± 1.1346 ▲▲▲ | 8.926 ± 0.9146 ○○○ |
Tested Parameter | At the Beginning of the Winter Swimming Season (BS) | At the End of the Winter Swimming Season (ES) | ||||
---|---|---|---|---|---|---|
BS-0 (Baseline) | BS-30 | BS-24 | ES-0 (Baseline) | ES-30 | ES-24 | |
CAT activity [×104 IU/g Hb] | 48.080 ± 8.6771 | 56.816 ± 11.8414 * | 62.576 ± 11.8443 *** | 54.837 ± 10.4888 | 56.663 ± 11.3870 | 64.322 ± 13.4264 □ |
SOD activity [U/g Hb] | 704.436 ± 92.7566 | 683.087 ± 57.3460 | 710.673 ± 45.9504 | 1185.317 ± 168.0817 *** | 752.717 ± 123.7629 □□□ | 1007.905 ± 206.8254 ○○○,□□□,■■■ |
GPx activity [U/g Hb] | 2.995 ± 0.5334 | 2.735 ± 0.4044 | 5.850 ± 1.3911 *** | 7.290 ± 1.3773 *** | 8.236 ± 2.4774 ▲▲▲ | 11.104 ± 2.8143 ○○○, □□□, ■■■ |
Vitamin A concentration [μg/L] | 625.610 ± 180.6440 | 640.546 ± 227.8534 | 535.498 ± 167.8814 | 578.380 ± 144.3902 | 601.680 ± 173.3010 | 546.483 ± 202.1694 |
Vitamin E concentration [μg/L] | 13.966 ± 5.7379 | 17.882 ± 6.0835 * | 15.128 ± 3.4387 | 15.082 ± 4.5453 | 17.788 ± 4.5063 | 17.664 ± 5.2275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesołowski, R.; Mila-Kierzenkowska, C.; Pawłowska, M.; Szewczyk-Golec, K.; Saletnik, Ł.; Sutkowy, P.; Woźniak, A. The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males. Metabolites 2023, 13, 143. https://doi.org/10.3390/metabo13020143
Wesołowski R, Mila-Kierzenkowska C, Pawłowska M, Szewczyk-Golec K, Saletnik Ł, Sutkowy P, Woźniak A. The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males. Metabolites. 2023; 13(2):143. https://doi.org/10.3390/metabo13020143
Chicago/Turabian StyleWesołowski, Roland, Celestyna Mila-Kierzenkowska, Marta Pawłowska, Karolina Szewczyk-Golec, Łukasz Saletnik, Paweł Sutkowy, and Alina Woźniak. 2023. "The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males" Metabolites 13, no. 2: 143. https://doi.org/10.3390/metabo13020143