Short Video Viewing, and Not Sedentary Time, Is Associated with Overweightness/Obesity among Chinese Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. SVV and ST
2.3. Overweightness/Obesity Measures
2.4. Covariate Variables
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, Y.; Fang, H.Y.; Yu, W.T.; Wang, J.Z.; Yu, D.M.; Zhao, L.Y.; Liang, X.F.; Zhao, W.H. Epidemiological characteristics of waist circumference and abdominal obesity among chinese adults in 2010-2012. Zhonghua Yu Fang Yi Xue Za Zhi 2017, 51, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef]
- Fernandes-Silva, M.M.; Shah, A.M.; Claggett, B.; Cheng, S.; Tanaka, H.; Silvestre, O.M.; Nadruz, W.; Borlaug, B.; Solomon, S.D. Adiposity, body composition and ventricular-arterial stiffness in the elderly: The Atherosclerosis Risk in Communities Study. Eur. J. Heart Fail. 2018, 20, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, W.J.; Khera, A.V.; Kim, J.Y.; Yon, D.K.; Lee, S.W.; Shin, J.I.; Won, H.-H. Association between adiposity and cardiovascular outcomes: An umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 2021, 42, 3388–3403. [Google Scholar] [CrossRef]
- Chastin, S.F.; Buck, C.; Freiberger, E.; Murphy, M.; Brug, J.; Cardon, G.; O’Donoghue, G.; Pigeot, I.; Oppert, J.M. Systematic literature review of determinants of sedentary behaviour in older adults: A DEDIPAC study. Int. J. Behav. Nutr. Phy. Act. 2015, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Knaeps, S.; Bourgois, J.G.; Charlier, R.; Mertens, E.; Lefevre, J.; Wijndaele, K. Ten-year change in sedentary behaviour, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: Independent associations and mediation analysis. Br. J. Sports Med. 2018, 52, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.A.; Bottai, M.; Park, Y.; Marshall, S.J.; Moore, S.C.; Matthews, C.E. A Prospective Study of Sedentary Behavior and Changes in the Body Mass Index Distribution. Med. Sci. Sports Exerc. 2014, 46, 2244–2252. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Kolle, E.; Steene-Johannessen, J.; Dalene, K.E.; Nilsen, A.K.O.; Anderssen, S.A.; Hansen, B.H. Objectively measured sedentary time and physical activity and associations with body weight gain: Does body weight determine a decline in moderate and vigorous intensity physical activity? Int. J. Obes. (Lond.) 2017, 41, 1769–1774. [Google Scholar] [CrossRef]
- Van Dyck, D.; Barnett, A.; Van Cauwenberg, J.; Zhang, C.J.P.; Sit, C.H.P.; Cerin, E. Main and interacting effects of physical activity and sedentary time on older adults’ BMI: The moderating roles of socio-demographic and environmental attributes. PLoS ONE 2020, 15, e0235833. [Google Scholar] [CrossRef]
- Sebastião, E.; Bobitt, J.; Papini, C.B.; Nakamura, P.M.; Kokubun, E.; Gobbi, S. Sedentary Behavior Is Associated with Low Leisure-Time Physical Activity and High Body Fatness in Older Brazilian Adults. Am. J. Lifestyle Med. 2021, 15, 286–292. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Bengoechea, E.G.; Pedisic, Z.; Bennie, J.; Vergeer, I.; Wiesner, G. Screen time, other sedentary behaviours, and obesity risk in adults: A review of reviews. Curr. Obes. Rep. 2017, 6, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Lowell, B.B.; Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Natrue 2000, 404, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Inoue, S.; Sugiyama, T.; Owen, N.; Oka, K.; Shimomitsu, T. Correlates of prolonged television viewing time in older Japanese men and women. BMC Public Health 2013, 13, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, S.; Sugiyama, T.; Takamiya, T.; Oka, K.; Owen, N.; Shimomitsu, T. Television Viewing Time is Associated with Overweight/Obesity Among Older Adults, Independent of Meeting Physical Activity and Health Guidelines. J. Epidemiol. 2012, 22, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsueh, M.-C.; Liao, Y.; Chang, S.-H. Are Total and Domain-Specific Sedentary Time Associated with Overweight in Older Taiwanese Adults? Int. J. Environ. Res. Public Health 2015, 12, 12697–12705. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, P.A.; Healy, G.N.; Eakin, E.G.; Clark, B.K.; Dunstan, D.W.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Associations Between Television Viewing Time and Overall Sitting Time with the Metabolic Syndrome in Older Men and Women: The Australian Diabetes Obesity and Lifestyle Study. J. Am. Geriatr. Soc. 2011, 59, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.A.; Mire, E.; Harrington, D.M.; Staiano, A.E.; Katzmarzyk, P.T. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity 2013, 21, E730–E737. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, H.; Inoue, S.; Sugiyama, T.; Owen, N.; Oka, K.; Nakaya, T.; Shimomitsu, T. Distinct associations of different sedentary behaviors with health-related attributes among older adults. Prev. Med. 2014, 67, 335–339. [Google Scholar] [CrossRef] [Green Version]
- China Internet Network Information Center. The 48th Statistical Report on Internet Development in China. Available online: http://www.cnnic.cn/hlwfzyj/hlwxzbg/ (accessed on 11 October 2021).
- China Netcasting Services Association. Research Report on the Development of Internet Audiovisual in China in 2021. Available online: http://www.cnsa.cn/uploads/20210708/9040a5f9bc56e6fd690005818e087551.pdf (accessed on 11 October 2021).
- Ngqangashe, Y.; Backer, C.J.S. The differential effects of viewing short-form online culinary videos of fruits and vegetables versus sweet snacks on adolescents’ appetites. Appetite 2021, 166, 105436. [Google Scholar] [CrossRef]
- Boyland, E.J.; Nolan, S.; Kelly, B.; Tudur-Smith, C.; Jones, A.; Halford, J.C.; Robinson, E. Advertising as a cue to consume: A systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults. Am. J. Clin. Nutr. 2016, 103, 519–533. [Google Scholar] [CrossRef]
- Molenaar, A.; Saw, W.Y.; Brennan, L.; Reid, M.; Lim, M.S.C.; McCaffrey, T.A. Effects of Advertising: A Qualitative Analysis of Young Adults’ Engagement with Social Media about Food. Nutrients. 2021, 13, 1934. [Google Scholar] [CrossRef]
- Trost, S.G.; Mciver, K.L.; Pate, R.R. Conducting Accelerometer-Based Activity Assessments in Field-Based Research. Med. Sci. Sports Exerc. 2005, 37, S531–S543. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P. Large-scale applications of accelerometers: New frontiers and new questions. Med. Sci. Sports Exerc. 2007, 39, 1501. [Google Scholar] [CrossRef] [PubMed]
- Gába, A.; Kapuš, O.; Cuberek, R.; Botek, M. Comparison of multi- and single-frequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in post-menopausal women: Effects of body mass index and accelerometer-determined physical activity. J. Hum. Nutr. Diet. 2015, 28, 390–400. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.-L.; Chiou, J.-F.; Lin, C.-C. Validation of the Taiwanese Version of the Athens Insomnia Scale and Assessment of Insomnia in Taiwanese Cancer Patients. J. Pain Symptom Manag. 2011, 41, 904–914. [Google Scholar] [CrossRef]
- Zhuo, L.; Xu, L.; Ye, J.; Sun, S.; Zhang, Y.; Burstrom, K.; Chen, J. Time Trade-Off Value Set for EQ-5D-3L Based on a Nationally Representative Chinese Population Survey. Value Health 2018, 21, 1330–1337. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Guan, H.; Yao, J.; Xiong, X.; Ma, A. The quality of life in Chinese population with chronic non-communicable diseases according to EQ-5D-3L: A systematic review. Qual. Life Res. 2018, 27, 2799–2814. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.; Monahan, P.O.; Löwe, B. Anxiety Disorders in Primary Care: Prevalence, Impairment, Comorbidity, and Detection. Ann. Intern. Med. 2007, 146, 317–325. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The patient health questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef]
- Isautier, J.M.; Bosnić, M.; Yeung, S.S.; Trappenburg, M.C.; Meskers, C.; Whittaker, A.C.; Maier, A.B. Validity of Nutritional Screening Tools for Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J. Am. Med Dir. Assoc. 2019, 20, 1351.e13–1351.e25. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Schultz-Larsen, K.; Lomholt, R.K.; Kreiner, S. Mini-Mental Status Examination: A short form of MMSE was as accurate as the original MMSE in predicting dementia. J. Clin. Epidemiol. 2007, 60, 260–267. [Google Scholar] [CrossRef]
- Wanner, M.; Richard, A.; Martin, B.; Faeh, D.; Rohrmann, S. Associations between self-reported and objectively measured physical activity, sedentary behavior and overweight/obesity in NHANES 2003–2006. Int. J. Obes. (Lond.) 2016, 41, 186–193. [Google Scholar] [CrossRef]
- Foong, Y.C.; Aitken, D.; Winzenberg, T.; Otahal, P.; Scott, D.; Jones, G. The association between physical activity and reduced body fat lessens with age—Results from a cross-sectional study in community-dwelling older adults. Exp. Gerontol. 2014, 55, 107–112. [Google Scholar] [CrossRef]
- Peterson, M.D.; AL Snih, S.; Stoddard, J.; Mcclain, J.; Lee, I.-M. Adiposity and Insufficient MVPA Predict Cardiometabolic Abnormalities in Adults. Med. Sci. Sports Exerc. 2014, 46, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Tarp, J.; Fagerland, M.W.; Johannessen, J.S.; Hansen, B.H.; Jefferis, B.J.; Whincup, P.H.; Diaz, K.M.; Hooker, S.; Howard, V.J.; et al. Joint associations of accelero-meter measured physical activity and sedentary time with all-cause mortality: A harmonised meta-analysis in more than 44 000 middle-aged and older individuals. Br. J. Sports Med. 2021, 54, 1499–1506. [Google Scholar] [CrossRef]
- Swartz, A.M.; Tarima, S.; Miller, N.E.; Hart, T.L.; Grimm, E.K.; Rote, A.E.; Strath, S.J. Prediction of Body Fat in Older Adults by Time Spent in Sedentary Behavior. J. Aging Phys. Act. 2012, 20, 332–344. [Google Scholar] [CrossRef]
- Stamatakis, E.; Davis, M.; Stathi, A.; Hamer, M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev. Med. 2012, 54, 82–87. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Z.; Howard, V.J.; Judd, S.E.; Blair, S.N.; Sun, Y.; Hooker, S.P. Is adiposity associated with objectively measured physical activity and sedentary behaviors in older adults? BMC Geriatr. 2020, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Bennett, D.; Li, L.; Whitlock, G.; Guo, Y.; Collins, R.; Chen, J.; Bian, Z.; Hong, L.S.; Feng, S.; et al. Physical activity and sedentary leisure time and their associations with bmi; waist circumference; and percentage body fat in 0.5 million adults: The china kadoorie biobank study. Am. J. Clin. Nutr. 2013, 97, 487–496. [Google Scholar] [PubMed] [Green Version]
- Marin, M.-F.; Morin-Major, J.-K.; Schramek, T.E.; Beaupré, A.; Perna, A.; Juster, R.-P.; Lupien, S.J. There Is No News Like Bad News: Women Are More Remembering and Stress Reactive after Reading Real Negative News than Men. PLoS ONE 2012, 7, e47189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomiyama, A.J. Stress and obesity. Annu. Rev. Psychol. 2019, 70, 703–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Zhou, H.; Gong, L.; Teng, B.; Geng, F.; Hu, Y. Viewing personalized video clips recommended by TikTok activates default mode network and ventral tegmental area. NeuroImage 2021, 237, 118136. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.; Han, H.; Ma, J.; Liu, G.; Wu, X.; Huang, X.; Fang, R.; Baba, K.; Bin, P.; et al. Administration of Exogenous Melatonin Improves the Diurnal Rhythms of the Gut Microbiota in Mice Fed a High-Fat Diet. mSystems 2020, 5, e00002-20. [Google Scholar] [CrossRef]
- Boswell, R.G.; Kober, H. Food cue reactivity and craving predict eating and weight gain: A meta-analytic review. Obes. Rev. 2016, 17, 159–177. [Google Scholar] [CrossRef]
- Harris, J.L.; Bargh, J.A.; Brownell, K.D. Priming effects of television food advertising on eating behavior. Health Psychol. 2009, 28, 404–413. [Google Scholar] [CrossRef]
- Hobbs, M.; Pearson, N.; Foster, P.J.; Biddle, S.J.H. Sedentary behaviour and diet across the lifespan: An updated systematic review. Br. J. Sports Med. 2014, 49, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Lancet, Physical Activity Series 2 Executive Committe; Lancet Sedentary Behaviour Working Group. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
Daily Exposure | |||||
---|---|---|---|---|---|
Characteristics | Total | Non–SVV (n = 370) | SVV a (n = 636) | SVV b (n = 99) | p Value |
Age (years) | 65.00 (63.00–67.00) | 65.00 (63–68) | 65.00 (63.00–67.00) | 64.00 (62.00–66.00) | 0.020 |
Income, (¥/month) | |||||
≤¥1000 | 35 (3.17) | 14 (40.00) | 17 (48.57) | 4 (11.43) | |
¥1001–2000 | 102 (9.23) | 36 (35.29) | 64 (62.75) | 2 (1.96) | |
¥2001–3000 | 181 (16.38) | 58 (32.04) | 106 (58.56) | 17 (9.39) | 0.303 |
¥3001–4000 | 565 (51.13) | 182 (32.21) | 330 (58.4) | 53 (9.38) | |
>¥4000 | 222 (20.09) | 80 (36.04) | 119 (53.60) | 23 (10.36) | |
Living alone | 121 (10.95) | 46 (38.02) | 69 (57.02) | 4 (4.96) | 0.195 |
No chronic disease | 385 (34.84) | 123 (31.95) | 232 (60.26) | 30 (7.79) | 0.356 |
Current drinker | 105 (9.50) | 32 (30.48) | 65 (61.90) | 8 (7.62) | 0.629 |
Overweightness/obesity Indicators | |||||
BMI (kg/m2) | 25.20 (23.20–27.40) | 24.70 (22.90–26.80) | 25.40 (23.40–27.60) | 25.70 (23.70–28.20) | 0.007 |
BFR (%) | 35.90 (32.10–39.80) | 35.25 (31.50–39.20) | 36.20 (32.40–40.25) | 37.40 (33.80–40.20) | 0.003 |
FM (kg) | 22.90 (18.90–27.60) | 22.05 (18.30–26.50) | 23.05 (19.20–28.10) | 24.40 (20.20–27.80) | 0.003 |
VFM (kg) | 3.60 (2.80–4.90) | 3.45 (2.60–4.70) | 3.70 (2.80–5.10) | 4.00 (3.00–5.10) | 0.004 |
SFM (kg) | 19.20 (16.30–22.70) | 18.70 (15.60–21.90) | 19.40 (16.40–23.05) | 20.40 (17.00–23.10) | 0.002 |
TFM (kg) | 13.30 (10.70–16.30) | 12.60 (10.30–15.60) | 13.40 (10.90–16.50) | 13.90 (11.60–16.90) | 0.003 |
LFM (kg) | 9.80 (8.30–11.60) | 9.55 (8.10–11.20) | 9.80 (8.40–11.70) | 10.50 (8.80–12.10) | 0.003 |
Physical activity and sedentary behavior | |||||
ST (h/day) | 8.81 (7.87–9.98) | 8.73 (7.75–9.97) | 8.87 (7.97–10.02) | 8.81 (7.93–9.76) | 0.389 |
MVPA (h/day) | 0.47 (0.27–0.68) | 0.49 (0.30–0.71) | 0.45 (0.25–0.66) | 0.48 (0.26–0.71) | 0.039 |
wear time (h/day) | 14.50 (13.48–15.62) | 14.57 (13.59–15.77) | 14.46 (13.41–15.58) | 14.35 (13.54–15.10) | 0.189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; He, Q.; Pan, Y.; Kumagai, S.; Chen, S.; Zhang, X. Short Video Viewing, and Not Sedentary Time, Is Associated with Overweightness/Obesity among Chinese Women. Nutrients 2022, 14, 1309. https://doi.org/10.3390/nu14061309
Chen K, He Q, Pan Y, Kumagai S, Chen S, Zhang X. Short Video Viewing, and Not Sedentary Time, Is Associated with Overweightness/Obesity among Chinese Women. Nutrients. 2022; 14(6):1309. https://doi.org/10.3390/nu14061309
Chicago/Turabian StyleChen, Ke, Qiang He, Yang Pan, Shuzo Kumagai, Si Chen, and Xianliang Zhang. 2022. "Short Video Viewing, and Not Sedentary Time, Is Associated with Overweightness/Obesity among Chinese Women" Nutrients 14, no. 6: 1309. https://doi.org/10.3390/nu14061309
APA StyleChen, K., He, Q., Pan, Y., Kumagai, S., Chen, S., & Zhang, X. (2022). Short Video Viewing, and Not Sedentary Time, Is Associated with Overweightness/Obesity among Chinese Women. Nutrients, 14(6), 1309. https://doi.org/10.3390/nu14061309