Stronger Association between High Intensity Physical Activity and Cardiometabolic Health with Improved Assessment of the Full Intensity Range Using Accelerometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Markers of Cardiometabolic Health
2.3. Physical Activity
2.4. Sample Characteristics
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Fröberg, A.; Berg, C.; Larsson, C.; Boldemann, C.; Raustorp, A. Combinations of Epoch Durations and Cut-Points to Estimate Sedentary Time and Physical Activity Among Adolescents. Meas. Phys. Educ. Exerc. Sci. 2017, 21, 154–160. [Google Scholar] [CrossRef]
- John, D.; Miller, R.; Kozey-Keadle, S.; Caldwell, G.; Freedson, P. Biomechanical Examination of the ‘Plateau Phenomenon’ in ActiGraph Vertical Activity Counts. Physiol. Meas. 2012, 33, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating Actigraph Counts from Raw Acceleration Recorded by an Alternative Monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Fridolfsson, J.; Börjesson, M.; Arvidsson, D. A Biomechanical Re-Examination of Physical Activity Measurement with Accelerometers. Sensors 2018, 18, 3399. [Google Scholar] [CrossRef] [Green Version]
- Fridolfsson, J.; Börjesson, M.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D. Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors 2019, 19, 2186. [Google Scholar] [CrossRef] [Green Version]
- Lear, S.A.; Hu, W.; Rangarajan, S.; Gasevic, D.; Leong, D.; Iqbal, R.; Casanova, A.; Swaminathan, S.; Anjana, R.M.; Kumar, R.; et al. The effect of physical activity on mortality and cardiovascular disease in 130,000 people from 17 high-income, middle-income, and low-income countries: The PURE study. Lancet 2017, 390, 2643–2654. [Google Scholar] [CrossRef]
- Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: Challenges, pitfalls, and potential solutions. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 74. [Google Scholar] [CrossRef]
- Olsson, S.J.G. Studies of Physical Activity in the Swedish Population. Ph.D. Thesis, Swedish School of Sport and Health Sciences, Stockholm, Sweden, 2016. [Google Scholar]
- Ekblom-Bak, E.; Olsson, G.; Ekblom, Ö.; Ekblom, B.; Bergström, G.; Börjesson, M. The Daily Movement Pattern and Fulfilment of Physical Activity Recommendations in Swedish Middle-Aged Adults: The SCAPIS Pilot Study. PLoS ONE 2015, 10, e0126336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, G.; Berglund, G.; Blomberg, A.; Brandberg, J.; Engström, G.; Engvall, J.; Eriksson, M.; de Faire, U.; Flinck, A.; Hansson, M.G.; et al. The Swedish CArdioPulmonary BioImage Study: Objectives and design. J. Intern. Med. 2015, 278, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Ekblom-Bak, E.; Björkman, F.; Hellenius, M.-L.; Ekblom, B. A new submaximal cycle ergometer test for prediction of VO2max. Scand. J. Med. Sci. Sports 2014, 24, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, L.B.; Harro, M.; Sardinha, L.B.; Froberg, K.; Ekelund, U.; Brage, S.; Anderssen, S.A. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef]
- Robusto, K.M.; Trost, S.G. Comparison of three generations of ActiGraphTM activity monitors in children and adolescents. J. Sports Sci. 2012, 30, 1429–1435. [Google Scholar] [CrossRef]
- Judge, D.; Maygarden, J. ActiGraph .gt3x File Format. Available online: https://github.com/actigraph/GT3X-File-Format (accessed on 2 April 2019).
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; Mcdowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, I.W.J. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Kvalheim, O.M. Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. J. Chemom. 2010, 24, 496–504. [Google Scholar] [CrossRef]
- Kvalheim, O.M.; Arneberg, R.; Grung, B.; Rajalahti, T. Determination of optimum number of components in partial least squares regression from distributions of the root-mean-squared error obtained by Monte Carlo resampling. J. Chemom. 2018, 32, e2993. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Cardinal, B.J. Association between Biologic Outcomes and Objectively Measured Physical Activity Accumulated in ≥ 10-Minute Bouts and < 10-Minute Bouts. Am. J. Health Promot. 2013, 27, 143–151. [Google Scholar]
- Arvidsson, D.; Lindblad, U.; Sundquist, J.; Sundquist, K.; Groop, L.; Bennet, L. Vigorous Physical Activity may be Important for the Insulin Sensitivity in Immigrants from the Middle East and Native Swedes. J. Phys. Act. Health 2015, 12, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018; p. 779.
- Ng, C.-A.; McMillan, L.B.; Beck, B.; Humbert, L.; Ebeling, P.R.; Scott, D. Associations between physical activity and bone structure in older adults: Does the use of self-reported versus objective assessments of physical activity influence the relationship? Osteoporos. Int. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Weggemans, R.M.; Jacobs, D.R.; Hannan, P.J.; Zock, P.L.; Ordovas, J.M.; Katan, M.B. Within-person variation in serum lipids: Implications for clinical trials. Int. J. Epidemiol. 2004, 33, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuya, M.; Ohkubo, T.; Metoki, H.; Asayama, K.; Hara, A.; Obara, T.; Inoue, R.; Hoshi, H.; Hashimoto, J.; Totsune, K.; et al. Day-by-Day Variability of Blood Pressure and Heart Rate at Home as a Novel Predictor of Prognosis. Hypertension 2008, 52, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P. The number of repeated observations needed to estimate the habitual physical activity of an individual to a given level of precision. PLoS ONE 2018, 13, e0192117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.D.; Jakicic, J.M.; Rejeski, W.J.; Whit-Glover, M.; Lang, W.; Walkup, M.P.; Hodges, M. Effect of Varying Accelerometry Criteria on Physical Activity: The Look AHEAD Study. Obesity 2013, 21, 32–44. [Google Scholar] [CrossRef]
Mean (SD) | |
---|---|
N (% female) | 725 (52%) |
Age (years) | 55.9 (7.2) |
Markers of cardiometabolic health | |
Systolic blood pressure (mmHg) | 123.2 (16.6) |
Triglycerides (mmol/L) | 1.20 (0.79) |
Total cholesterol:HDL (ratio) | 3.59 (1.16) |
HOMA (index) | 2.11 (2.75) |
Waist:height (ratio) | 0.54 (0.06) |
Fitness (mL/kg/min) | 33.5 (7.4) |
Physical activity assessment | |
Valid days (days) | 7.63 (2.13) |
Wear time (hours per day) | 14.1 (1.3) |
Physical activity ActiGraph filter (Minutes per day) | |
Sedentary | 869.0 (55.3) |
Light physical activity | 114.9 (33.4) |
Moderate physical activity | 90.0 (29.5) |
Vigorous physical activity | 4.29 (5.29) |
Very vigorous physical activity | 1.17 (2.58) |
Physical activity 10 Hz filter (Minutes per day) | |
Sedentary | 870.6 (56.0) |
Light physical activity | 135.0 (40.3) |
Moderate physical activity | 71.9 (25.6) |
Vigorous physical activity | 1.62 (3.46) |
Very vigorous physical activity | 0.37 (1.51) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fridolfsson, J.; Börjesson, M.; Ekblom-Bak, E.; Ekblom, Ö.; Arvidsson, D. Stronger Association between High Intensity Physical Activity and Cardiometabolic Health with Improved Assessment of the Full Intensity Range Using Accelerometry. Sensors 2020, 20, 1118. https://doi.org/10.3390/s20041118
Fridolfsson J, Börjesson M, Ekblom-Bak E, Ekblom Ö, Arvidsson D. Stronger Association between High Intensity Physical Activity and Cardiometabolic Health with Improved Assessment of the Full Intensity Range Using Accelerometry. Sensors. 2020; 20(4):1118. https://doi.org/10.3390/s20041118
Chicago/Turabian StyleFridolfsson, Jonatan, Mats Börjesson, Elin Ekblom-Bak, Örjan Ekblom, and Daniel Arvidsson. 2020. "Stronger Association between High Intensity Physical Activity and Cardiometabolic Health with Improved Assessment of the Full Intensity Range Using Accelerometry" Sensors 20, no. 4: 1118. https://doi.org/10.3390/s20041118
APA StyleFridolfsson, J., Börjesson, M., Ekblom-Bak, E., Ekblom, Ö., & Arvidsson, D. (2020). Stronger Association between High Intensity Physical Activity and Cardiometabolic Health with Improved Assessment of the Full Intensity Range Using Accelerometry. Sensors, 20(4), 1118. https://doi.org/10.3390/s20041118