Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Root-Bernstein, R. Age and Location in Severity of COVID-19 Pathology: Do Lactoferrin and Pneumococcal Vaccination Explain Low Infant Mortality and Regional Differences? BioEssays 2020. [Google Scholar] [CrossRef]
- Pawlowski, C.; Puranik, A.; Bandi, H.; Venkatakrishnan, A.J.; Agarwal, V.; Kennedy, R.; O’Horo, J.C.; Gores, G.J.; Williams, A.W.; Halamka, J.; et al. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. medRxiv 2020. [Google Scholar] [CrossRef]
- Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020, eabb9983. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, A.; Supekar, N.T.; Gleinich, A.; Azadi, P. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 2020. [Google Scholar] [CrossRef]
- WHO. Recommendations to Assure the Quality, Safety and Efficacy of Pneumococcal Conjugate Vaccines; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Lee, C.; Chun, H.J.; Park, M.; Kim, R.K.; Whang, Y.H.; Choi, S.K.; Baik, Y.O.; Park, S.S.; Lee, I. Quality Improvement of Capsular Polysaccharide in Streptococcus pneumoniae by Purification Process Optimization. Front. Bioeng. Biotechnol. 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, V.; Dee, V.; Suárez, N. Purification of Capsular Polysaccharides of Streptococcus pneumoniae: Traditional and New Methods. Front. Bioeng. Biotechnol. 2018, 6. [Google Scholar] [CrossRef]
- Yu, X.; Sun, Y.; Frasch, C.; Concepcion, N.; Nahm, M.H. Pneumococcal Capsular Polysaccharide Preparations May Contain Non-C-Polysaccharide Contaminants That Are Immunogenic. Clin. Diagn. Lab. Immunol. 1999, 6, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Briles, D.E.; Englund, J.A.; Hollingshead, S.K.; Glezen, W.P.; Nahm, M.H. Immunogenic Protein Contaminants in Pneumococcal Vaccines. J. Infect. Dis. 2003, 187, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Walter, A.; Briles, D.E.; Hollingshead, S.K. The pspC Gene of Streptococcus pneumoniae Encodes a Polymorphic Protein, PspC, Which Elicits Cross-Reactive Antibodies to PspA and Provides Immunity to Pneumococcal Bacteremia. Infect. Immun. 1999, 67, 6533–6542. [Google Scholar] [CrossRef] [Green Version]
- Ogunniyi, A.D.; Woodrow, M.C.; Poolman, J.T.; Paton, J.C. Protection against Streptococcus pneumoniae Elicited by Immunization with Pneumolysin and CbpA. Infect. Immun. 2001, 69, 5997–6003. [Google Scholar] [CrossRef] [Green Version]
- Möginger, U.; Resemann, A.; Martin, C.E.; Parameswarappa, S.; Govindan, S.; Wamhoff, E.-C.; Broecker, F.; Suckau, D.; Pereira, C.L.; Anish, C.; et al. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci. Rep. 2016, 6, 20488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudensky, A.Y.; Preston-Hurlburt, P.; Hong, S.-C.; Barlow, A.; Janeway, C.A. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991, 353, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, B.; Kondo, T.; Gran, B.; Pinilla, C.; Cortese, I.; Pascal, J.; Tzou, A.; McFarland, H.F.; Houghten, R.; Martin, R. Minimal peptide length requirements for CD4+ T cell clones—Implications for molecular mimicry and T cell survival. Int. Immunol. 2000, 12, 375–383. [Google Scholar] [CrossRef]
- Ekeruche-Makinde, J.; Miles, J.J.; Berg, H.A.V.D.; Skowera, A.; Cole, D.K.; Dolton, G.; Schauenburg, A.J.A.; Tan, M.P.; Pentier, J.M.; Llewellyn-Lacey, S.; et al. Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood 2013, 121, 1112–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, M.W.; McCormack, J.M.; Fenderson, P.G.; Ho, M.K.; Beachey, E.H.; Dale, J.B. Human and murine antibodies cross-reactive with streptococcal M protein and myosin recognize the sequence GLN-LYS-SER-LYS-GLN in M protein. J. Immunol. 1989, 143, 2677–2683. [Google Scholar]
- Kanduc, D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J. Exp. Ther. Oncol. 2009, 8, 65–76. [Google Scholar]
- Root-Bernstein, R. Autoreactive T-cell receptor (Vbeta/D/Jbeta) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor. J. Mol. Recognit. 2009, 22, 177–187. [Google Scholar]
- Root-Bernstein, R. Rethinking Molecular Mimicry in Rheumatic Heart Disease and Autoimmune Myocarditis: Laminin, Collagen IV, CAR, and B1AR as Initial Targets of Disease. Front. Pediatr. 2014, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Root-Bernstein, R. T Cell Receptor Variable Regions in Diabetes Bind to Each Other, to Insulin, Glucagon or Insulin Receptor, and to Their Antibodies. Open Autoimmun. J. 2012, 4, 10–22. [Google Scholar] [CrossRef]
- Root-Bernstein, R. How to Make a Non-Antigenic Protein (Auto) Antigenic: Molecular Complementarity Alters Antigen Processing and Activates Adaptive-Innate Immunity Synergy. Anti-Cancer Agents Med. Chem. 2015, 15, 1242–1259. [Google Scholar] [CrossRef]
- Takiishi, T.; Fenero, C.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef] [PubMed]
- Damian, R.T. Molecular Mimicry in Biological Adaptation. Science 1965, 147, 824. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.S.; Moise, L.; Liu, R.; Gutierrez, A.; Tassone, R.; Bailey-Kellogg, C.; Martin, W. Immune camouflage: Relevance to vaccines and human immunology. Hum. Vaccines Immunother. 2014, 10, 3570–3575. [Google Scholar] [CrossRef] [Green Version]
- Moise, L.; Beseme, S.; Tassone, R.; Liu, R.; Kibria, F.; Terry, F.; Martin, W.; De Groot, A.S. T cell epitope redundancy: Cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev. Vaccines 2016, 15, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Root-Bernstein, R. Autoimmunity and the microbiome: T-cell receptor mimicry of “self” and microbial antigens mediates self tolerance in holobionts. BioEssays 2016, 38, 1068–1083. [Google Scholar] [CrossRef]
- Root-Bernstein, R. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies. Int. J. Mol. Sci. 2017, 18, 2091. [Google Scholar] [CrossRef] [Green Version]
- Bobes, N.S. Package inserts. N. Engl. J. Med. 1968, 278, 282. [Google Scholar]
- FDA. Package Insert. PNEUMOVAX 23 1983. Available online: https://www.fda.gov/media/80547/download (accessed on 28 June 2020).
- CDC. About Diphtheria, Tetanus, and Pertussis Vaccines. 2020. Available online: https://www.cdc.gov/vaccines/vpd/dtap-tdap-td/hcp/about-vaccine.html (accessed on 28 June 2020).
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith, D.; Phillips, E.J.; et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, eabd3871. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Pre-existing immunity to SARS-CoV-2: The knowns and unknowns. Nat. Rev. Immunol. 2020, 20, 1–2. [Google Scholar] [CrossRef]
- Merckx, J.; Labrecque, J.A.; Kaufman, J.S. Transmission of SARS-CoV-2 by Children. Dtsch. Arztebl. Int. 2020, 117, 553–560. [Google Scholar]
- Zhang, W.; Cheng, W.; Luo, L.; Ma, Y.; Xu, C.; Qin, P.; Zhang, Z. Secondary Transmission of Coronavirus Disease from Presymptomatic Persons, China. Emerg. Infect. Dis. 2020, 26, 1924–1926. [Google Scholar] [CrossRef] [PubMed]
- Kam, K.-Q.; Yung, C.F.; Cui, L.; Lin, R.T.P.; Mak, T.M.; Maiwald, M.; Li, J.; Chong, C.Y.; Nadua, K.; Tan, N.W.H.; et al. A Well Infant with Coronavirus Disease 2019 with High Viral Load. Clin. Infect. Dis. 2020, 71, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Yang, N.; Ma, A.H.Y.; Wang, L.; Li, G.; Chen, X.; Chen, X. COVID-19 Transmission Within a Family Cluster by Presymptomatic Carriers in China. Clin. Infect. Dis. 2020, 71, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Xu, S.; Rong, Z.; Xu, R.; Liu, X.; Deng, P.; Liu, H.; Xu, X. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int. J. Infect. Dis. 2020, 94, 133–138. [Google Scholar] [CrossRef]
- Härkönen, T.; Puolakkainen, M.; Sarvas, M.; Airaksinen, U.; Hovi, T.; Roivainen, M. Picornavirus proteins share antigenic determinants with heat shock proteins 60/65. J. Med. Virol. 2000, 62, 383–391. [Google Scholar] [CrossRef]
- Misko, I.S.; Cross, S.M.; Khanna, R.; Elliott, S.L.; Schmidt, C.W.; Pye, S.J.; Silins, S.L. Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: Implications for molecular mimicry in autoimmune disease. Proc. Natl. Acad. Sci. USA 1999, 96, 2279–2284. [Google Scholar] [CrossRef] [Green Version]
- Trama, A.M.; Moody, M.A.; Alam, S.M.; Jaeger, F.H.; Lockwood, B.; Parks, R.; Lloyd, K.E.; Stolarchuk, C.; Scearce, R.; Foulger, A.; et al. HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host Microbe 2014, 16, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.B.; Liao, H.-X.; Moody, M.A.; Kepler, T.B.; Alam, S.M.; Gao, F.; Wiehe, K.; Trama, A.M.; Jones, K.; Zhang, R.; et al. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science 2015, 349, aab1253. [Google Scholar] [CrossRef] [Green Version]
- Ross, T.; Slavik, M.; Bayyari, G.; Skeeles, J. Elimination of Mycoplasmal Plate Agglutination Cross-Reactions in Sera from Chickens Inoculated with Infectious Bursal Disease Viruses. Avian Dis. 1990, 34, 663. [Google Scholar] [CrossRef]
- Bordenave, G. L’idiotypie comparée des anticorps de lapins différents contresalmonella abortus-equi et contre le virus de la mosaique du tabac. observation d’une réactivité croisée entre certains idiotypes d’anticorps contre ces deux matériels antigéniques. Eur. J. Immunol. 1973, 3, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Root-Bernstein, R.S. Vaccination markers: Designing unique antigens to be added to vaccines to differentiate between natural infection and vaccination. Vaccine 2005, 23, 2057–2059. [Google Scholar] [CrossRef] [PubMed]
- Root-Bernstein, R. Positive Vaccination Markers. Hum. Vaccines 2007, 3, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Ashford, J.W.; Franklin, R.; Young, A.; Neumann, B.; Fernandez, R.; Joannides, A.; Reyahi, A.; Modis, Y. Faculty Opinions recommendation of Homologous protein domains in SARS-CoV-2 and measles, mumps and rubella viruses: Preliminary evidence that MMR vaccine might provide protection against COVID-19. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2020. [Google Scholar] [CrossRef]
- Ashford, J.W.; Gold, J.E.; Tilley, L.P.; Baumgartl, W. Faculty Opinions recommendation of MMR Vaccine Appears to Confer Strong Protection from COVID-19: Few Deaths from SARS-CoV-2 in Highly Vaccinated Populations. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2020. [Google Scholar] [CrossRef]
- Chumakov, K.; Gallo, R. Could an Old Vaccine be a Godsend for New Coronavirus? Using the Oral Polio Vaccine Could Prevent or Reduce the Spread of COVID-19 to Immunized Individuals. USA Today. 21 April 2020. Available online: https://www.usatoday.com/story/opinion/2020/04/21/oral-polio-vaccine-has-potential-treat-coronavirus-column/5162859002/ (accessed on 21 April 2020).
- Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; Van Crevel, R.; Van De Veerdonk, F.L.; Bonten, M. Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020, 181, 969–977. [Google Scholar] [CrossRef]
- Riccò, M.; Gualerzi, G.; Ranzieri, S.; Bragazzi, N.L. Stop playing with data: There is no sound evidence that Bacille Calmette-Guérin may avoid SARS-CoV-2 infection (for now). Acta Bio Med. Atenei Parm. 2020, 91, 207–213. [Google Scholar]
- Hamiel, U.; Kozer, E.; Youngster, I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA 2020, 323, 2340. [Google Scholar] [CrossRef]
- Pereira, M.; Paixão, E.; Trajman, A.; De Souza, R.A.; Da Natividade, M.S.; Pescarini, J.M.; Pereira, S.M.; Barreto, F.R.; Ximenes, R.; Dalcomo, M.; et al. The need for fast-track, high-quality and low-cost studies about the role of the BCG vaccine in the fight against COVID-19. Respir. Res. 2020, 21, 1–3. [Google Scholar] [CrossRef]
- De Bruyn, J.; Bosmans, R.; Turneer, M.; Weckx, M.; Nyabenda, J.; Van Vooren, J.P.; Falmagne, P.; Wiker, H.G.; Harboe, M. Purification, partial characterization, and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect. Immun. 1987, 55, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Harboe, M.; Wiker, H.G.; Nagai, S. Protein Antigens of Mycobacteria Studied by Quantitative Immunologic Techniques. Clin. Infect. Dis. 1992, 14, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Romain, F.; Laqueyrerie, A.; Militzer, P.; Pescher, P.; Cavarot, P.; Lagranderie, M.; Auregan, G.; Gheorghiu, M.; Marchal, G. Identification of a Mycobacterium bovis BCG 45/47-kilodalton antigen complex, an immunodominant target for antibody response after immunization with living bacteria. Infect. Immun. 1993, 61, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Aguilo, N.; Gonzalo-Asensio, J.; Álvarez-Arguedas, S.; Marinova, D.; Gomez, A.B.; Uranga, S.; Spallek, R.; Singh, M.; Audran, R.; Spertini, F.; et al. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nat. Commun. 2017, 8, 16085. [Google Scholar] [CrossRef]
- Mustafa, A.S.; Skeiky, Y.A.; Al-Attiyah, R.; Alderson, M.R.; Hewinson, R.G.; Vordermeier, M. Immunogenicity of Mycobacterium tuberculosis Antigens in Mycobacterium bovis BCG-Vaccinated and M. bovis-Infected Cattle. Infect. Immun. 2006, 74, 4566–4572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: Implications for Pandemic Influenza Preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Stefani, C.; Origoni, G.C.M. Prevention of Cervical Cancer in Women: Human Papillomavirus DNA Testing in Atypical Pap Smears. J. Virol. Antivir. Res. 2013, 2, 1. [Google Scholar] [CrossRef]
- Cucchiari, D.; Pericàs, J.M.; Riera, J.; Gumucio, R.; Coloma, E.; Nicolás, D.; Hospital Clínic 4H Team. Pneumococcal superinfection in COVID-19 patients: A series of 5 cases. Med. Clín. 2020. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. COVID-19, superinfections and antimicrobial development: What can we expect? Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 530. [Google Scholar] [CrossRef]
- Xia, W.; Shao, J.-B.; Guo, Y.; Peng, X.; Li, Z.; Hu, D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol. 2020, 55, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-J.; Dong, X.; Cao, Y.-Y.; Yuan, Y.-D.; Yang, Y.-B.; Yan, Y.-Q.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Li, H.; Zhao, S.C.; Lu, R.J.; Niu, P.H.; Tan, W. Viral and Bacterial Etiology of Acute Febrile Respiratory Syndrome among Patients in Qinghai, China. Biomed. Environ. Sci. 2019, 32, 438–445. [Google Scholar] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Lavoignet, C.-E.; Le Borgne, P.; Chabrier, S.; Bidoire, J.; Slimani, H.; Chevrolet-Lavoignet, J.; Lefebvre, F.; Jebri, R.; Sengler, L.; Bilbault, P.; et al. White blood cell count and eosinopenia as valuable tools for the diagnosis of bacterial infections in the ED. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1523–1532. [Google Scholar] [CrossRef]
- Debray, A.; Nathanson, S.; Moulin, F.; Salomon, J.; Davido, B. Eosinopenia as a marker of diagnosis and prognostic to distinguish bacterial from aseptic meningitis in pediatrics. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1821–1827. [Google Scholar] [CrossRef]
- Van De Garde, M.D.B.; Van Westen, E.; Poelen, M.C.M.; Rots, N.Y.; Van Els, C.A.C.M. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect. Immun. 2019, 87, e00098-19. [Google Scholar] [CrossRef] [Green Version]
- Briles, D.E.; Hollingshead, S.; Brooks-Walter, A.; Nabors, G.S.; Ferguson, L.; Schilling, M.; Gravenstein, S.; Braun, P.; King, J.; Swift, A. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 2000, 18, 1707–1711. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Darrieux, M.; Silva, D.A.; Leite, L.C.C.; Ferreira, J.M.C.; Ho, P.L.; Miyaji, E.; De Oliveira, M.L.S. Characterization of Protective Mucosal and Systemic Immune Responses Elicited by Pneumococcal Surface Protein PspA and PspC Nasal Vaccines against a Respiratory Pneumococcal Challenge in Mice. Clin. Vaccine Immunol. 2009, 16, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schachern, P.A.; Tsuprun, V.; Ferrieri, P.; Briles, D.E.; Goetz, S.; Cureoglu, S.; Paparella, M.M.; Juhn, S. Pneumococcal PspA and PspC proteins: Potential vaccine candidates for experimental otitis media. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 1517–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagousi, T.; Basdeki, P.; Routsias, J.G.; Spoulou, V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Masomian, M.; Ahmad, Z.; Gew, L.T.; Poh, C.L. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines 2020, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Fedson, D.S.; Nicolas-Spony, L.; Klemets, P.; Van Der Linden, M.; Marques, J.; Salleras, L.; Samson, S.I. Pneumococcal polysaccharide vaccination for adults: New perspectives for Europe. Expert Rev. Vaccines 2011, 10, 1143–1167. [Google Scholar] [CrossRef]
- Mahamat, A.; Daurès, J.-P.; De Wazières, B. Additive preventive effect of influenza and pneumococcal vaccines in the elderly. Hum. Vaccines Immunother. 2013, 9, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Miller, E. Potential impact of Covid-19 response measures on invasive pneumococcal disease in England and Wales. MedRxiv 2020. [Google Scholar] [CrossRef]
- National Institute for Communicable Diseases (South Africa). Pneumococcal Conjugate Vaccine Use in the Light of the COVID-19 Pandemic. 2020. Available online: https://www.nicd.ac.za/diseases-a-z-index/covid-19/advice-for-the-public/pneumococcal-conjugate-vaccine-use-in-the-light-of-the-covid-19-pandemic/ (accessed on 10 July 2020).
- Statens Serum Institut. Selected Risk Groups are Offered free Pneumococcal Vaccination. 2020. Available online: https://www.sst.dk/da/Nyheder/2020/Udvalgte-risikogrupper-faar-tilbud-om-gratis-vaccination-mod-pneumokokker (accessed on 7 April 2020).
- New Zealand. Policy on Pneumococcal Vaccination and COVID. 2020. Available online: https://www.nzdoctor.co.nz/article/news/pneumococcal-vax-potential-option-improve-outcomes-compromised-patients-face-covid-19 (accessed on 19 August 2020).
MICROBE | UniProt Identification | List of Proteins |
---|---|---|
STREPTOCOCCUS PNEUMONIAE | O34097 | pspA, Pneumococcal Surface Protein A |
Q9LAZ1 | ||
B2IRK1 | ||
Q9LAY4 | ||
P0A4G2 | psaA, Pneumococcal surface protein, Manganese ABC transporter substrate protein | |
P0A4G3 | ||
P42363 | ||
Q04JB8 | ||
Q9KK40 | pspC, Pneumococcal Surface protein PspC | |
Q9FDQ1 | ||
Q9KK37 | ||
Q9KK24 | ||
Q8DRK2 | Pneumococcal Gram-positive anchor protein | |
MUMPS | P11235| | HN_MUMPM (HN)RecName: Full = Hemagglutinin-neuraminidase |
P30929 | L_MUMPM (L)RecName: Full = RNA-directed RNA polymerase L | |
P09458 | FUS_MUMPR (F)RecName: Full = Fusion glycoprotein F0 | |
P30928 | V_MUMPM (P/V)RecName: Full = Non-structural protein V | |
P22112 | SH_MUMPM (SH)RecName: Full = Small hydrophobic protein | |
MEASLES | P08362 | HEMA_MEASE (H)RecName: Full = Hemagglutinin glycoprotein |
Q89933 | NCAP_MEASF (N)RecName: Full = Nucleoprotein | |
P12576 | L_MEASE (L)RecName: Full = RNA-directed RNA polymerase L | |
Q786F3 | FUS_MEASC (F)RecName: Full = Fusion glycoprotein F0 | |
P0C774 | V_MEASC (P/V)RecName: Full = Non-structural protein V | |
RUBELLA | P08563 | POLS_RUBVM RecName: Full = Structural polyprotein (contains spike protein E1, spike protein E2, capsid protein) 1063 aa |
Q86500 | POLN_RUBVM RecName: Full = Non-structural polyprotein p200 (contains p90, p150 and p200 proteins) 2116 aa | |
POLIO | P03301 | P03301|POLG_POL1S RecName: Full = Genome polyprotein; 2209 aa CONTAINS: P3; Protein 3AB; P1; Capsid protein VP0; Capsid protein VP4; Capsid protein VP2; Capsid protein VP3 |
PERTUSSIS | P04977 | TOX1_BORPE (ptxA)RecName: Full = Pertussis toxin subunit 1 |
P04978 | TOX2_BORPE (ptxB)RecName: Full = Pertussis toxin subunit 2 | |
P04979 | TOX3_BORPE (ptxC)RecName: Full = Pertussis toxin subunit 3 | |
P0A3R5 | TOX4_BORPE (ptxD)RecName: Full = Pertussis toxin subunit 4 | |
P04981 | TOX5_BORPE (ptxE)RecName: Full = Pertussis toxin subunit 5 | |
P35077 | FHAC_BORPE (fhaC)RecName: Full = Filamentous hemagglutinin transporter protein FhaC | |
P14283 | PERT_BORPE (prn)RecName: Full = Pertactin autotransporter | |
P05788 | FM2_BORPE (fim2)RecName: Full = Serotype 2 fimbrial subunit | |
P17835 | FM3_BORPE (fim3)RecName: Full = Serotype 3 fimbrial subunit | |
TETANUS | P04958 | TETX_CLOTE (tetX)RecName: Full = Tetanus toxin |
DIPHTHERIA | Q5PY51 | Q5PY51_CORDP SubName: Full = Diphtheria toxin |
Q6NK15 | Q6NK15_CORDI (tox)SubName: Full = Diphtheria toxin | |
MENINGOCOCCUS | 0DH58 | OMPA_NEIMB (porA)RecName: Full = Major outer membrane protein |
SARS-CoV-2 | P0DTC1 | P0DTC1 Replicase polyprotein 1a (pp1a) |
P0DTC2 | P0DTC2 Spike glycoprotein (S) | |
P0DTC3 | P0DTC3 Protein 3a (NS3a) | |
P0DTC4 | P0DTC4 Envelope small membrane protein (E) | |
P0DTC5 | P0DTC5 Membrane protein (M) | |
P0DTC6 | P0DTC6 Non-structural protein 6 (NS6) | |
P0DTC7 | P0DTC7 Protein 7a (NS7a) | |
P0DTC8 | P0DTC8 Non-structural protein 8 (NS8) | |
P0DTC9 | P0DTC9 Nucleoprotein (N) | |
P0DTD1 | P0DTD1 Replicase polyprotein 1ab (pp1ab) | |
P0DTD2 | P0DTD2 Protein 9b (NS9B) | |
P0DTD3 | P0DTD3 Uncharacterized protein 14 (NS14) | |
P0DTD8 | P0DTD8 Protein 7b (NS7b) | |
Mycobacterium tuberculosis | MYCTU_UP000001584 | M. tuberculosis (strain ATCC 25618/3997 protein sequences; 1,332,562 total letters |
Bordetella pertussis | BORPE_UP000002676 | B. pertussis strain Tohama I/ATCC BAA-589/NCTC 13251; 3260 proteins sequences |
Escherichia coli K12 | ECOLI_UP000000625 | Escherichia coli K12, 4403 protein sequences |
Clostridium leptum | 9CLOT_UP000018168 | Clostridium leptum CAG:27 proteome; 2482 protein sequences |
Lactobacillus paracasei | LACP3_ UP000001651 | Lactobacillus paracasei strain ATCC 334/BCRC; 2708 protein sequences |
Lactococcus lactis | LACLA_UP000002196 | Lactococcus lactis subsp. lactis (strain IL1403); 2225 protein sequences |
LALIGN E = 0.1 | PNEUM | CRM 197 | RUB-ELLA | MEAS-LES | MUMPS | Acell PERT | DIPH | TET | POLIO | Men-ingitis |
---|---|---|---|---|---|---|---|---|---|---|
P0DTC1 Repl 1a | 15 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
P0DTC2 Spike Prot | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC3 Prot 3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
P0DTC4 Env Prot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC5 Memb Prot | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC6 NS6 Prot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PODTC7 Prot 7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC8 NS8 Prot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC9 Nucleoprot | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD1 Repl 1ab | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD2 NS9b Prot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD3 NS Prot 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD8 Prot 7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total Matches | 21 | 1 | 4 | 2 | 0 | 2 | 0 | 1 | 0 | 0 |
# Proteins | 4 | 1 | 6 | 5 | 5 | 9 | 1 | 1 | 7 | 1 |
Avg/Prot | 5.2 | 1.0 | 0.7 | 0.4 | 0 | 0.2 | 0 | 1.0 | 0 | 0 |
LALIGN E = 1.0 | PNEUM | CRM 197 | RUB-ELLA | MEAS-LES | MUMPS | Acell PERT | DIPH | TET | POLIO | Men-ingitis |
---|---|---|---|---|---|---|---|---|---|---|
P0DTC1 Repl 1a | 26 | 4 | 18 | 9 | 6 | 2 | 3 | 1 | 3 | 3 |
P0DTC2 Spike Prot | 4 | 0 | 5 | 2 | 2 | 0 | 0 | 6 | 1 | 2 |
P0DTC3 Prot 3a | 2 | 0 | 6 | 1 | 2 | 0 | 0 | 1 | 1 | 0 |
P0DTC4 Env Prot | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC5 Memb Prot | 7 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 1 | 0 |
P0DTC6 NS6 Prot | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PODTC7 Prot 7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC8 NS8 Prot | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTC9 Nucleoprot | 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 |
P0DTD1 Repl 1ab | 6 | 2 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
P0DTD2 NS9b Prot | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD3 Prot NS14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P0DTD8 Prot 7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total Matches | 51 | 10 | 34 | 12 | 12 | 6 | 5 | 9 | 8 | 5 |
# Proteins | 4 | 1 | 6 | 5 | 5 | 9 | 1 | 1 | 7 | 1 |
Avg/Prot | 12.8 | 10.0 | 5.7 | 2.4 | 2.4 | 0.7 | 5.0 | 9.0 | 1.1 | 5 |
BLAST, E = 1.0 and 10.0 | Whole PERT | BCG | C. lept | E. coli | L. lact | L. para | Whole PERT | BCG | C. lept | E. coli | L. lact | L. para |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P0DTC1 Repl 1a | 0 | 5 | 0 | 2 | 0 | 1 | 5 | 4 | 4 | 6 | 4 | 3 |
P0DTC2 Spike Protein | 1 | 0 | 0 | 0 | 0 | 1 | 9 | 4 | 1 | 6 | 1 | 4 |
P0DTC3 Protein 3a | 0 | 0 | 0 | 1 | 2 | 0 | 10 | 6 | 7 | 5 | 4 | 4 |
P0DTC4 Env Protein | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 |
P0DTC5 Memb Prot | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 6 | 4 | 6 | 9 | 10 |
P0DTC6 NS6 Protein | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | 2 | 0 | 10 | 5 |
PODTC7 Protein 7a | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 2 | 2 | 5 | 6 | 3 |
P0DTC8 NS8 Protein | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 3 | 1 | 3 |
P0DTC9 Nucleoprot | 1 | 0 | 0 | 0 | 0 | 0 | 7 | 4 | 1 | 3 | 2 | 2 |
P0DTD1 Repl 1ab | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 4 | 3 | 3 | 4 | 5 |
P0DTD2 NS9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 5 | 3 | 3 |
P0DTD3 NS Protein 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 2 |
P0DTD8 Protein 7b | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
Total Matches | 6 | 5 | 2 | 6 | 5 | 4 | 55 | 36 | 33 | 46 | 44 | 42 |
# Proteins | 3260 | 3997 | 2482 | 4403 | 2225 | 2708 | 3260 | 3997 | 2482 | 4403 | 2225 | 2708 |
Avg/Prot | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.017 | 0.009 | 0.013 | 0.010 | 0.020 | 0.016 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Root-Bernstein, R. Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Vaccines 2020, 8, 559. https://doi.org/10.3390/vaccines8040559
Root-Bernstein R. Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Vaccines. 2020; 8(4):559. https://doi.org/10.3390/vaccines8040559
Chicago/Turabian StyleRoot-Bernstein, Robert. 2020. "Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death" Vaccines 8, no. 4: 559. https://doi.org/10.3390/vaccines8040559
APA StyleRoot-Bernstein, R. (2020). Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Vaccines, 8(4), 559. https://doi.org/10.3390/vaccines8040559