Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = (IC)-RT-PCR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3854 KB  
Article
Sinapic Acid Regulates the LXRα–ABCG5/8 Axis in the Hepatocytes: A Potential Strategy for Cholesterol Gallstone Management
by Sridevi Rajendran, Chitra Vellapandian, Bhupendra G. Prajapati and Himanshu Paliwal
Pharmaceuticals 2025, 18(9), 1388; https://doi.org/10.3390/ph18091388 - 17 Sep 2025
Viewed by 420
Abstract
Background/Objective: Gallstone disease (cholelithiasis) is a prevalent hepatobiliary disorder with limited non-surgical therapeutic options. Sinapic acid (SINAP), a phenolic compound found in various dietary sources, has demonstrated anti-inflammatory and hepatoprotective effects. However, its role in gallstone dissolution has not been explored. This study [...] Read more.
Background/Objective: Gallstone disease (cholelithiasis) is a prevalent hepatobiliary disorder with limited non-surgical therapeutic options. Sinapic acid (SINAP), a phenolic compound found in various dietary sources, has demonstrated anti-inflammatory and hepatoprotective effects. However, its role in gallstone dissolution has not been explored. This study was designed to evaluate whether sinapic acid modulates hepatic cholesterol transport and enhances gallstone dissolution using a gallstone dissolution assay in artificial bile solution. Methods: The cytotoxicity of SINAP was assessed in HepG2 cells via the MTT assay. The mRNA and protein expression of lipid transporters (ABCG5, ABCG8, and LXRα) was quantified using qRT-PCR, ELISA, and Western blotting. Additionally, molecular docking was conducted to evaluate SINAP’s interaction with gallstone-related protein targets compared to that for the standard drugs (ursodeoxycholic acid and ezetimibe). Results: SINAP achieved a 53.71% gallstone weight reduction over 12 days, comparable to that with ursodiol (59.24%), and following 24 h of exposure, SINAP demonstrated minimal cytotoxicity, maintaining over 80% cell viability up to 50 µg/mL, with an IC50 value of 28 µg/mL. SINAP significantly upregulated ABCG5, ABCG8, and LXRα expression (p < 0.01), suggesting enhanced bile acid secretion. Docking studies confirmed the strong binding affinities of SINAP to key cholesterol transport proteins. Conclusions: These results indicate that SINAP may serve as a promising natural candidate for non-surgical management of cholelithiasis and support further preclinical investigation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

12 pages, 1083 KB  
Article
Regulation of Cell Cycle-Related Damage/Repair Mechanism and Oxidative Stress Status by Oroxylin A in Hepatocellular Carcinoma Cells
by Fatma Seçer Çelik, Safaa Altveş and Canan Eroğlu Güneş
Int. J. Mol. Sci. 2025, 26(18), 8942; https://doi.org/10.3390/ijms26188942 - 13 Sep 2025
Viewed by 457
Abstract
Hepatocellular carcinoma is a progressive tumor with an aggressive nature. Despite many treatment options, survival rates remain low. In this study, the effect of Orox A on hepatocellular carcinoma cells was investigated. Hep3B cells were treated with a range of Orox A, and [...] Read more.
Hepatocellular carcinoma is a progressive tumor with an aggressive nature. Despite many treatment options, survival rates remain low. In this study, the effect of Orox A on hepatocellular carcinoma cells was investigated. Hep3B cells were treated with a range of Orox A, and cell viability was assessed by MTT assays. Subsequent analyses using RT-qPCR demonstrated alterations in the expression of DNA damage and repair genes. To determine the damage in cancer cells, the amount of 8-OHdG and NO in the cells was measured by the ELISA method. Additionally, total antioxidant/oxidant status was measured, and the OSI value was calculated. Flow cytometry analysis was conducted to ascertain the specific cell cycle phase. The IC50 dose of Orox A for hepatocellular carcinoma cells was calculated to be 1385 μM at 24 h. According to the gene expression analysis results, NEIL1, OGG1, ATM and ATR gene expressions increased significantly, while APEX1 gene expression decreased significantly. The amount of 8-OHdG dramatically increased in cancer cells treated with Orox A, whereas the level of NO significantly decreased. Total antioxidant status (TAS) and total oxidant status (TOS) were significantly decreased in Orox A-applied cancer cells, and the oxidative stress index (OSI) was significantly increased. Flow cytometry analysis revealed that Orox A treatment caused G2/M phase arrest in the cell cycle. These findings collectively suggest that Orox A exerts cytotoxic effects on Hep3B cells through mechanisms involving DNA damage, oxidative stress, and cell cycle modulation, making it a promising candidate for further anticancer therapy development. Full article
(This article belongs to the Special Issue Molecular Advances in Cancer and Cell Metabolism—2nd Edition)
Show Figures

Figure 1

15 pages, 2020 KB  
Article
Transcriptome-Based Identification of Novel Transcription Factors Regulating Seed Storage Proteins in Rice
by Jinpyo So, Jong-Yeol Lee, Kyoungwon Cho, Suchan Park, Kyuhee Lee, Don-Kyu Kim and Oksoo Han
Plants 2025, 14(17), 2791; https://doi.org/10.3390/plants14172791 - 5 Sep 2025
Viewed by 609
Abstract
Seed storage proteins (SSPs) play a pivotal role in determining the development, quality, and nutritional value of rice seeds. In this study, we conducted a transcriptome-based correlation analysis to identify novel transcription factors (TFs) potentially involved in the biosynthesis and accumulation of SSPs. [...] Read more.
Seed storage proteins (SSPs) play a pivotal role in determining the development, quality, and nutritional value of rice seeds. In this study, we conducted a transcriptome-based correlation analysis to identify novel transcription factors (TFs) potentially involved in the biosynthesis and accumulation of SSPs. Our analysis revealed nine TFs—OsGATA8, OsMIF1, OsMIF2, OsGZF1, OsbZIP58, OsS1Fa1, OsS1Fa2, OsICE2, and OsMYB24—that exhibit strong co-expression with key SSP genes, including those encoding glutelin and prolamin. Gene expression profiling using quantitative RT-PCR and GUS reporter assays revealed that these TFs are predominantly expressed during seed development, with peak expression observed at 10 days after flowering (DAF). Promoter analysis further demonstrated an enrichment of seed-specific and hormone-responsive cis-regulatory elements, reinforcing the seed-preferential expression patterns of these TFs. Collectively, our findings identify a set of candidate TFs likely involved in SSP regulation and seed maturation, providing a foundation for the genetic enhancement of rice seed quality and nutritional content through targeted breeding and biotechnological approaches. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice—2nd Edition)
Show Figures

Figure 1

34 pages, 9495 KB  
Article
Specific Assay Protocols for Porcine Single-Eye Retinal Pigment Epithelium Concerning Oxidative Stress and Inflammation
by Philipp Dörschmann, Marie Prinz, Greta Schmitkall, Johann Roider and Alexa Klettner
Int. J. Mol. Sci. 2025, 26(17), 8434; https://doi.org/10.3390/ijms26178434 - 29 Aug 2025
Viewed by 525
Abstract
The retinal pigment epithelium (RPE) is strongly involved in the pathogenesis of several retinal diseases, such as age-related macular degeneration (AMD). RPE models addressing specific pathological pathways are of high importance for understanding cellular pathomechanisms and pre-clinical screening of potential new therapeutics. The [...] Read more.
The retinal pigment epithelium (RPE) is strongly involved in the pathogenesis of several retinal diseases, such as age-related macular degeneration (AMD). RPE models addressing specific pathological pathways are of high importance for understanding cellular pathomechanisms and pre-clinical screening of potential new therapeutics. The goal of this study is to establish standard operation protocols for single-eye porcine RPE preparation for AMD-relevant models of oxidative stress (RPE-Ox) and inflammation (RPE-Inf). Porcine primary RPE were prepared from one eye and seeded into one well of 12-well plates or, for polar differentiation, in transwell inserts. Different coatings (Poly-ᴅ-Lysine and laminin) and serum content of media (10%, 5%, and 1%) were tested to determine optimal culture parameters. For RPE-Ox, cells were treated with NaIO3, CoCl2, or erastin; cell viability (thiazolyl blue tetrazolium bromide, MTT), and gene expression (RT-qPCR) were determined. For RPE-Inf, cells were treated with lipopolysaccharide (LPS), polyinosinic/polycytidylic acid (Poly I:C), or tumor necrosis factor alpha (TNF-α); cell viability (MTT), cytokine secretion (ELISA), and gene expression (RT-qPCR) were determined. For transwell plates in RPE-Inf, cell viability (MTT), polar cytokine secretion (ELISA), gene expression (RT-qPCR), and transepithelial electrical resistance (TEER) for barrier assessment were conducted. For RPE-Ox, effective LD50 could be achieved by using 24 h stimulation with 25 µm erastin, seven days after preparation in 5% serum cultures, without coating. For gene expression assessment, the use of Poly-ᴅ-Lysine is recommended. For RPE-Inf, three days of LPS stimulation (1 µg/mL) showed effective cytokine activation with 5% serum on uncoated 12-well plates. Transwell plates are not recommended for cytokine secretion assessment. It can be used for cell barrier assays in which LPS also showed effective cell barrier decrease and gene expression assays. Two specific best practice protocols for the use of porcine single-eye cultures in AMD research concerning oxidative stress and inflammation with optimized parameters were established and are provided. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Retinal Diseases)
Show Figures

Figure 1

15 pages, 2576 KB  
Article
Dextromethorphan Enhances Apoptosis and Suppresses EMT in PANC-1 Pancreatic Cancer Cells: Synergistic Effects with Gemcitabine
by Gulsah Medet and Ahmet Inal
Int. J. Mol. Sci. 2025, 26(17), 8151; https://doi.org/10.3390/ijms26178151 - 22 Aug 2025
Viewed by 556
Abstract
This study aimed to evaluate the effects of dextromethorphan (DX), alone and in combination with gemcitabine (GEM), on cell viability, apoptosis, and epithelial–mesenchymal transition (EMT) markers in PANC-1 human pancreatic cancer cells. PANC-1 human pancreatic cancer cells were cultured and treated with varying [...] Read more.
This study aimed to evaluate the effects of dextromethorphan (DX), alone and in combination with gemcitabine (GEM), on cell viability, apoptosis, and epithelial–mesenchymal transition (EMT) markers in PANC-1 human pancreatic cancer cells. PANC-1 human pancreatic cancer cells were cultured and treated with varying concentrations of dextromethorphan (DX), gemcitabine (GEM), and 5-fluorouracil (5-FU), both as monotherapies and in combination. Cytotoxic effects were assessed using the MTT assay, and IC50 values were calculated at 24, 48, and 72 h. Apoptotic responses were evaluated using Annexin V-FITC/PI staining followed by flow cytometry. Protein expression levels of Bax, Bcl-2, and Vimentin were determined via immunocytochemistry, while EMT markers (E-cadherin, N-cadherin, Vimentin) were analyzed using flow cytometry. Relative mRNA expression of apoptotic and EMT-related genes was quantified by qRT-PCR. DX exhibited time- and dose-dependent cytotoxicity in PANC-1 cells, with IC50 values of 280.4 µM at 24 h, 163.2 µM at 48 h, and 105.6 µM at 72 h. For GEM, the 72 h IC50 was 57.53 µM. The combination of DX 50 µM + GEM 12.5 µM resulted in significantly lower cell viability (24.93 ± 3.12%) compared to GEM 25 µM (35.33 ± 5.22%) and DX 100 µM (51.40 ± 3.10%) (p < 0.001). Flow cytometry revealed significant increases in early (21.83 ± 1.32%) and late apoptotic cells (32.20 ± 0.84%) in the combination group, with a corresponding reduction in viable cells compared to control (24.93 ± 3.12% vs. 89.53 ± 0.97%, p < 0.001). Immunocytochemical analysis showed increased Bax-positive cell count (62.0 cells/unit area), and decreased Bcl-2 (19.0) and Vimentin (28.0) levels in the combination group compared to control (Bax: 15.0, Bcl-2: 60.0, Vimentin: 70.0) (p < 0.001). Flow cytometry for EMT markers demonstrated increased E-cadherin (83.84 ± 0.65%) and decreased Vimentin (71.04 ± 1.17%) and N-cadherin (30.47 ± 0.72%) expression in the DX + GEM group compared to EMT control (E-cadherin: 68.97 ± 1.43%, Vimentin: 91.00 ± 0.75%, N-cadherin: 62.47 ± 1.13%) (p < 0.001). qRT-PCR supported these findings with increased Bax (2.1-fold), E-cadherin (2.0-fold), and reduced Bcl-2 (0.3-fold) and XIAP (0.6-fold) in the combination group (p < 0.05). Dextromethorphan, particularly in combination with gemcitabine, appears to enhance apoptosis and suppress EMT-associated marker expression in PANC-1 cells, supporting its potential as an adjuvant agent in pancreatic cancer therapy. Full article
Show Figures

Figure 1

16 pages, 1920 KB  
Article
Novel Thiazolidinedione Derivatives as Potential ZIKV Antiviral Inhibitors
by Isabella Luiza Ralph de Oliveira, José Arion da Silva Moura, Patricia Recordon-Pinson, Floriane Lagadec, Michelle Melgarejo da Rosa, Sayonara Maria Calado Gonçalves, Douglas Carvalho Francisco Viana, Paulo André Teixeira de Moraes Gomes, Marina Galdino da Rocha Pitta, Moacyr Jesus Barreto de Melo Rêgo, Michelly Cristiny Pereira, Mathieu Métifiot, Marie-Line Andreola and Maira Galdino da Rocha Pitta
Microorganisms 2025, 13(9), 1967; https://doi.org/10.3390/microorganisms13091967 - 22 Aug 2025
Viewed by 489
Abstract
Zika virus (ZIKV) remains a pressing global health concern due to its association with congenital Zika syndrome and the current lack of approved antiviral therapies. In this study, we evaluated the antiviral activity of three novel thiazolidinedione derivatives, GQ-402, GQ-396, and ZKC-10, against [...] Read more.
Zika virus (ZIKV) remains a pressing global health concern due to its association with congenital Zika syndrome and the current lack of approved antiviral therapies. In this study, we evaluated the antiviral activity of three novel thiazolidinedione derivatives, GQ-402, GQ-396, and ZKC-10, against ZIKV in vitro and investigated their potential molecular targets through in silico analysis. GQ-402 exhibited the highest antiviral potency, with an IC50 of 15.7 µM, while ZKC-10 achieved the most substantial reduction in viral RNA levels, as determined by RT-qPCR. Molecular docking studies identified GQ-396 as the top-ranked inhibitor of the NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase, suggesting distinct mechanisms of action among the compounds. These findings highlight the therapeutic potential of thiazolidinedione derivatives and underscore the need for further investigation to develop effective treatments for ZIKV infection. Full article
(This article belongs to the Special Issue Emerging Infectious Diseases and Multidrug Resistance)
Show Figures

Figure 1

22 pages, 2638 KB  
Article
Identification of Bioactive Compounds in Warburgia salutaris Leaf Extracts and Their Pro-Apoptotic Effects on MCF-7 Breast Cancer Cells
by Lebogang Valentia Monama, Daniel Lefa Tswaledi, Tshisikhawe Masala Hadzhi, Makgwale Sharon Mphahlele, Mopeledi Blandina Madihlaba, Matlou Phineas Mokgotho, Leshweni Jeremia Shai and Emelinah Hluphekile Mathe
Int. J. Mol. Sci. 2025, 26(16), 8065; https://doi.org/10.3390/ijms26168065 - 20 Aug 2025
Viewed by 702
Abstract
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use [...] Read more.
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use and in discovering new therapeutic opportunities. This study aimed to screen volatile compounds of Warburgia salutaris leaf extracts and investigate their pro-apoptotic effects on MCF-7 cells. The approach was mainly based on determining cell viability using MTT and scratch assays, and DNA synthesis and damage using BrdU and comet assays, respectively. DAPI/PI stains were used for morphological analysis and expression was determined by RT-PCR and human apoptotic proteome profiler. Warburgia salutaris extracts exhibited antiproliferative effects on MCF-7 cells in a time- and dose-dependent manner. Acetone and methanol extracts exhibited low IC50 at 24, 48 and 72 h. Furthermore, the scratch test revealed that MCF-7 does not metastasise when treated with IC50. Expression showed upregulation of pro-apoptotic proteins and executioner caspases. Taken together, these findings suggest that leaves can promote apoptosis through the intrinsic apoptotic pathway, as observed by upregulation of the Bax and caspase 3 proteins. This paper provides new insights into the mechanisms of action of W. salutaris leaf extracts in the development of anticancer drugs. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

23 pages, 10351 KB  
Article
Precision Tracking of Industrial Manipulators via Adaptive Nonsingular Fixed-Time Sliding Mode Control
by Anh Tuan Vo, Thanh Nguyen Truong, Ic-Pyo Hong and Hee-Jun Kang
Mathematics 2025, 13(16), 2641; https://doi.org/10.3390/math13162641 - 17 Aug 2025
Viewed by 430
Abstract
This paper presents a novel adaptive fixed-time sliding mode control (AFxTSMC) framework for industrial manipulators. The proposed adaptive reaching law (ARL) enables rapid and stable gain reduction by leveraging the current parameter values to maintain positivity and prevent sign reversals, thereby reducing chattering. [...] Read more.
This paper presents a novel adaptive fixed-time sliding mode control (AFxTSMC) framework for industrial manipulators. The proposed adaptive reaching law (ARL) enables rapid and stable gain reduction by leveraging the current parameter values to maintain positivity and prevent sign reversals, thereby reducing chattering. Additionally, the ARL guarantees fixed-time convergence. A singularity-free fixed-time sliding function (SF-FxTSF) ensures fast, robust, and singularity-free convergence. To enhance robustness, a modified third-order sliding mode observer (TOSMO) is integrated into the control framework. This observer estimates both internal uncertainties and external disturbances with improved estimation speed, enabling effective compensation while maintaining convergence performance. A Lyapunov-based analysis rigorously confirms the stability of the proposed method. Simulations of the SAMSUNG FARA AT2 manipulator indicate superior tracking accuracy, faster convergence, and smoother control performance compared to the three state-of-the-art methods. These results underscore the proposed method’s advantages as a robust, scalable, and high-performance control solution for industrial robotic systems. Full article
(This article belongs to the Special Issue New Advances in Control Theory and Its Applications)
Show Figures

Figure 1

20 pages, 1927 KB  
Article
Cytotoxic Effects of Thymus serpyllum L. and Mentha × piperita L. Essential Oils on Basal Cell Carcinoma—An In Vitro Study
by Maja Milosevic Markovic, Boban Anicic, Milos Lazarevic, Milica Jaksic Karisik, Dijana Mitic, Branislav Milovanovic, Stefan Ivanovic, Ilinka Pecinar, Milan Petrovic, Masa Petrovic, Nikola Markovic, Milovan Bojic, Nada Petrovic, Slobodan Petrovic and Jelena Milasin
Life 2025, 15(8), 1296; https://doi.org/10.3390/life15081296 - 14 Aug 2025
Viewed by 729
Abstract
This study investigated the potential of Thymus serpyllum L. and Mentha × piperita L. essential oils (EOs), known for their bioactive properties, as adjunctive treatments targeting Basal cell carcinoma cancer stem cells (BCC CSCs). Primary cultures were established from ten BCC tumor samples [...] Read more.
This study investigated the potential of Thymus serpyllum L. and Mentha × piperita L. essential oils (EOs), known for their bioactive properties, as adjunctive treatments targeting Basal cell carcinoma cancer stem cells (BCC CSCs). Primary cultures were established from ten BCC tumor samples and their distant resection margins as controls. The chemical composition of the EOs was analyzed by gas chromatography–mass spectroscopy (GC-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The biological effects were evaluated via colony and spheroid formation, scratch assays, MTT and neutral red cytotoxicity assays, and qRT-PCR for Hh (SHH, PTCH1, SMO, and GLI1) and Notch (Notch1 and JAG1) gene expression. GC analysis identified thymol, p-cymene, and linalool as the main components of the EO of T. serpyllum L., and menthone and menthol in the EO of M. × piperita L. IC50 values were 262 µg/mL for T. serpyllum L. and 556 µg/mL for M. × piperita L. and were applied in all experiments. Both EOs significantly reduced CSC clonogenicity and migration (p < 0.05). The EO of T. serpyllum L. downregulated SMO and GLI1, while the EO of M. × piperita L. upregulated PTCH1, Notch1, and JAG1 (p < 0.05). These findings suggest that both EOs exhibit anticancer effects in BCC CSCs by modulating key oncogenic pathways, supporting their potential in BCC therapy. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

20 pages, 9103 KB  
Article
Nonlinear Aerodynamic Responses of Flight Control Surfaces to Thrust Reverser Jet-Induced Flow Interference
by Yongfeng Jin, Guang Yang, Shengwen Li, Xiaoyu Sun, Enhe Gao and Lianhe Zhang
Aerospace 2025, 12(8), 705; https://doi.org/10.3390/aerospace12080705 - 8 Aug 2025
Viewed by 500
Abstract
Numerical simulations were performed using the RANS (Reynolds-averaged Navier–Stokes) approach to analyze the flow field around an aircraft during the landing rollout phase with thrust reversers deployed. The objective was to characterize the flow structure modifications induced by the reversed jet flow and [...] Read more.
Numerical simulations were performed using the RANS (Reynolds-averaged Navier–Stokes) approach to analyze the flow field around an aircraft during the landing rollout phase with thrust reversers deployed. The objective was to characterize the flow structure modifications induced by the reversed jet flow and to assess its impact on the aerodynamic performance of various control surfaces. The results demonstrate that the reverse jet flow introduces significant disturbances to the flow field, substantially altering the aerodynamic load distribution over the airframe and causing a marked reduction in overall lift. High-lift devices are particularly susceptible to these effects: the pressure distributions on both the leading-edge slats and trailing-edge flaps are severely disrupted, resulting in a notable degradation of their lift augmentation capabilities. The rudder retains a generally linear response characteristic, though a slight reduction in effectiveness is observed. In contrast, the elevator exhibits a pronounced asymmetry in control effectiveness, with significantly greater degradation under positive deflection compared to negative deflection. This study elucidates the complex interference mechanisms associated with thrust reverser-induced flows and provides valuable insights for the optimization of thrust reverser system design and the enhancement of flight control strategies during the landing phase. It further delivers the first quantitative evaluation of elevator response asymmetry and accompanying lift degradation caused by reverse jet plumes, supplying design-ready metrics for reverser integration. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Figure 1

20 pages, 1316 KB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Viewed by 533
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

23 pages, 4445 KB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Viewed by 578
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

18 pages, 3267 KB  
Article
Sodium Caseinate Induces Apoptosis in Cytarabine-Resistant AML by Modulating SIRT1 and Chemoresistance Genes, Alone or in Combination with Cytarabine or Daunorubicin
by Daniel Romero-Trejo, Itzen Aguiñiga-Sánchez, Amanda Velasco-García, Katia Michell Rodríguez-Terán, Fabian Flores-Borja, Isabel Soto-Cruz, Martha Legorreta-Herrera, Víctor Manuel Macías-Zaragoza, Ernesto Romero-López, Benny Weiss-Steider, Karen Miranda-Duarte, Claudia Itzel Sandoval-Franco and Edelmiro Santiago-Osorio
Int. J. Mol. Sci. 2025, 26(15), 7468; https://doi.org/10.3390/ijms26157468 - 1 Aug 2025
Viewed by 709
Abstract
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, [...] Read more.
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, inhibits proliferation and modulates the expression of Ara-C resistance-related genes in chemoresistant cells. However, it remains unclear whether the combination of SC with antineoplastic agents enhances apoptosis, modulates chemoresistance-related genes, and prolongs the survival of tumor-bearing mice implanted with chemoresistant cells. Here, we investigated the effects of SC in combination with Ara-C or daunorubicin (DNR) on cell proliferation, apoptosis, the expression of chemoresistance-associated genes, and the survival of tumor-bearing mice. Crystal violet assays, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence, flow cytometry, and Kaplan–Meier survival curves were used to evaluate the effects of combinations in chemoresistant cells. We demonstrate that the IC25 concentration of SC, when combined with antileukemic agents, increases the sensitivity of chemoresistant WEHI-CR50 cells to Ara-C by downregulating SIRT1 and MDR1, upregulating the expression of ENT1 and dCK, enhancing apoptosis, and prolonging the survival of WEHI-CR50 tumor-bearing mice. Our data suggest that SC in combination with antileukemic agents could be an effective adjuvant for Ara-C-resistant AML. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Graphical abstract

20 pages, 2586 KB  
Article
Virome Survey of Banana Plantations and Surrounding Plants in Malawi
by Johnny Isaac Gregorio Masangwa, Coline Temple, Johan Rollin, François Maclot, Serkan Önder, Jamestone Kamwendo, Elizabeth Mwafongo, Philemon Moses, Isaac Fandika and Sebastien Massart
Viruses 2025, 17(8), 1068; https://doi.org/10.3390/v17081068 - 31 Jul 2025
Viewed by 762
Abstract
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 [...] Read more.
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 plant virus species were detected, three species on banana (275 plants) and 20 species in surrounding plants (91 plants). Two putative novel virus species; ginger tymo-like virus and pepper derived totivirus were detected and confirmed by RT-PCR on ginger and pepper. Nine known virus species and detected a host plant was identified for two of them. No viral exchange between banana and surrounding plants was observed. Results from the VANA protocol, applied to pooled banana samples, were compared with previous targeted PCR results obtained from individual banana samples. HTS test detected better BanMMV than IC-(RT)-PCR on individual samples (better inclusivity) but detected with much lower sensitivity BBTV and BSV species, often with less than 10 reads per sample. Detection of novel and known viruses and new host plants calls for strengthened sanitory and phytosanitory measures within and beyond banana production systems. Our research confirms that HTS sensitivity depends on sampling, pooling protocol and targeted virus species. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

19 pages, 2974 KB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 563
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

Back to TopTop