ijms-logo

Journal Browser

Journal Browser

Molecular Mechanisms and Treatment of Retinal Diseases

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 722

Special Issue Editors

Optometry/Ophthalmic Optics, Gangdong University, Chungcheongbuk-do 27600, Republic of Korea
Interests: retinal ischemic diseases; anti-aging; anti-Inflammation; neuroprotection; retinal metabolism; nutritional supplements; bioinformatics; vitamins; retinal dysfunction; fibrosis; peroxisome proliferator-activated receptor; hypoxia-inducible factor; nicotinamide adenine dinucleotide; drug delivery; experimental model development; pathology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The retina in the eye is essential for vision and is highly vulnerable to a range of pathological insults. Retinal degeneration due to aging, inflammation, and vascular damage remains a major cause of irreversible vision loss worldwide. In recent years, significant attention has been directed toward the role of metabolic regulation in maintaining retinal health, particularly in the context of high myopia, age-related macular degeneration, and glaucoma. Clinical and experimental studies suggest that targeted nutrients may exert protective effects by reducing oxidative stress, modulating inflammation, and preserving retinal integrity. Furthermore, innovative therapies such as cell-based treatments and advanced drug delivery systems, including eye drops capable of crossing ocular barriers, have emerged as promising strategies to restore or preserve vision. Light therapy has also gained interest as a non-invasive modality to modulate retinal physiology and potentially slow down degenerative progression.

This Special Issue will focus on recent advances across multiple fronts—including nutritional interventions, optometric management, regenerative therapies, drug delivery innovations, and digital health applications to address retinal degeneration, ischemia, and inflammatory retinal disorders in various eye diseases. By bringing together cutting-edge research and clinical insights, this collection can inspire new therapeutic strategies that can protect vision and enhance quality of life worldwide.

Dr. Deokho Lee
Dr. Livio Vitiello
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutritional supplementations
  • high myopia
  • optometry
  • cell therapy
  • drug delivery
  • age-related macular degeneration
  • glaucoma
  • retinal degeneration
  • choroidal thinning
  • scleral remodeling
  • light therapy
  • digital healthcare
  • prematurity of retionopathy
  • carotid artery occlusion
  • retinal ischemia
  • inflammation
  • eye drop

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

34 pages, 9495 KB  
Article
Specific Assay Protocols for Porcine Single-Eye Retinal Pigment Epithelium Concerning Oxidative Stress and Inflammation
by Philipp Dörschmann, Marie Prinz, Greta Schmitkall, Johann Roider and Alexa Klettner
Int. J. Mol. Sci. 2025, 26(17), 8434; https://doi.org/10.3390/ijms26178434 - 29 Aug 2025
Viewed by 433
Abstract
The retinal pigment epithelium (RPE) is strongly involved in the pathogenesis of several retinal diseases, such as age-related macular degeneration (AMD). RPE models addressing specific pathological pathways are of high importance for understanding cellular pathomechanisms and pre-clinical screening of potential new therapeutics. The [...] Read more.
The retinal pigment epithelium (RPE) is strongly involved in the pathogenesis of several retinal diseases, such as age-related macular degeneration (AMD). RPE models addressing specific pathological pathways are of high importance for understanding cellular pathomechanisms and pre-clinical screening of potential new therapeutics. The goal of this study is to establish standard operation protocols for single-eye porcine RPE preparation for AMD-relevant models of oxidative stress (RPE-Ox) and inflammation (RPE-Inf). Porcine primary RPE were prepared from one eye and seeded into one well of 12-well plates or, for polar differentiation, in transwell inserts. Different coatings (Poly-ᴅ-Lysine and laminin) and serum content of media (10%, 5%, and 1%) were tested to determine optimal culture parameters. For RPE-Ox, cells were treated with NaIO3, CoCl2, or erastin; cell viability (thiazolyl blue tetrazolium bromide, MTT), and gene expression (RT-qPCR) were determined. For RPE-Inf, cells were treated with lipopolysaccharide (LPS), polyinosinic/polycytidylic acid (Poly I:C), or tumor necrosis factor alpha (TNF-α); cell viability (MTT), cytokine secretion (ELISA), and gene expression (RT-qPCR) were determined. For transwell plates in RPE-Inf, cell viability (MTT), polar cytokine secretion (ELISA), gene expression (RT-qPCR), and transepithelial electrical resistance (TEER) for barrier assessment were conducted. For RPE-Ox, effective LD50 could be achieved by using 24 h stimulation with 25 µm erastin, seven days after preparation in 5% serum cultures, without coating. For gene expression assessment, the use of Poly-ᴅ-Lysine is recommended. For RPE-Inf, three days of LPS stimulation (1 µg/mL) showed effective cytokine activation with 5% serum on uncoated 12-well plates. Transwell plates are not recommended for cytokine secretion assessment. It can be used for cell barrier assays in which LPS also showed effective cell barrier decrease and gene expression assays. Two specific best practice protocols for the use of porcine single-eye cultures in AMD research concerning oxidative stress and inflammation with optimized parameters were established and are provided. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Retinal Diseases)
Show Figures

Figure 1

Back to TopTop