Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = 0-order catchments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 11185 KB  
Article
Assessment of the Volume, Spatial Diversity, Functioning, and Structure of Sediments in Water Bodies Within the Słubia River Catchment (Myślibórz Lakeland, Poland)
by Witold Jucha, Aleksandra Bobrek, Weronika Ceglarek, Piotr Cybul, Izabela Grabiec, Nikola Kachnowicz, Michał Kijowski, Natalia Konderak, Paulina Mareczka, Daniel Okupny, Zofia Sotek, Izabela Rysak and Piotr Trzepla
Water 2025, 17(17), 2530; https://doi.org/10.3390/w17172530 - 26 Aug 2025
Viewed by 526
Abstract
Water reservoirs play a crucial role in the environment in many aspects: hydrology, geochemistry, sediment lithology, geo- and biodiversity, landscape, etc. First of all, it is necessary to have accurate information about the spatial distribution of these objects in a given area to [...] Read more.
Water reservoirs play a crucial role in the environment in many aspects: hydrology, geochemistry, sediment lithology, geo- and biodiversity, landscape, etc. First of all, it is necessary to have accurate information about the spatial distribution of these objects in a given area to assess their size and functioning. Maps and contemporary spatial databases are often incomplete or outdated, especially in regard to small objects, of variable surface area and condition. This article uses the following approach: high-resolution terrain models derived from airborne laser scanning (ALS) were used for visual interpretation of extensive, flat depressions representing water body basins, thus determining the total number of objects, and classifying them as kettle holes, lakes, ponds, and other types of reservoirs (e.g., overbank basins, oxbow lakes). Using an aerial orthophotomap, the objects were subsequently verified as to how many basins are currently occupied by water bodies. The next step was to determine a number of topographic and morphometric parameters for each object in order to assess their functioning conditions. For selected objects, the assessment was expanded to include a geochemical and lithological analysis of the sediments. The study was conducted in the catchment of the Słubia River (136 km2), located in Central Europe, in northwestern Poland. In the Słubia catchment, a total of 931 water body basins were mapped. The dominant forms are kettle holes (<1 ha), representing nearly 80% of all objects. At present, kettle holes are largely devoid of water bodies and subject to a strong human impact. In addition to those, 118 lake basins were identified (>1 ha, the largest being Lake Morzycko, 360 ha), half of which are occupied by water reservoirs. Ponds and other reservoirs were represented by 37 and 47 objects, respectively. From the perspective of contemporary sediment-forming processes in the documented sedimentary basins, the most favorable conditions for biogenous sediment accumulation exist in the catchments of the upper and medium courses of the Słubia River valley. Although the lithological diversity and thickness of individual sediment types in the Słubia catchment represent local features, they corroborate the results of previous telmatologic research conducted in Myślibórz Lakeland. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Graphical abstract

10 pages, 1375 KB  
Proceeding Paper
Mapping Soil Moisture Using Drones: Challenges and Opportunities
by Ricardo Díaz-Delgado, Pauline Buysse, Thibaut Peres, Thomas Houet, Yannick Hamon, Mikaël Faucheux and Ophelie Fovert
Eng. Proc. 2025, 94(1), 18; https://doi.org/10.3390/engproc2025094018 - 25 Aug 2025
Viewed by 817
Abstract
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought [...] Read more.
Droughts are becoming more frequent, severe, and impactful across the globe. Agroecosystems, which are human-made ecosystems with high water demand that provide essential ecosystem services, are vulnerable to extreme droughts. Although water use efficiency in agriculture has increased in rec ent decades, drought management should be based on long-term, proactive strategies rather than crisis management. The AgrHyS network of sites in French Brittany collects high-resolution soil moisture data from agronomic stations and catchments to improve understanding of temporal soil moisture dynamics and enhance water use efficiency. Frequent mapping of soil moisture and plant water stress is crucial for assessing water stress risk in the context of global warming. Although satellite remote sensing provides reliable, periodic global data on surface soil moisture, it does so at a very coarse spatial resolution. The intrinsic spatial heterogeneity of surface soil moisture requires a higher spatial resolution in order to address upcoming challenges on a local scale. Drones are an excellent tool for upscaling point measurements to catchment level using different onboard cameras. In this study, we evaluated the potential of multispectral images, thermal images and LiDAR data captured in several concurrent drone flights for high-resolution mapping of soil moisture spatial variability, using in situ point measurements of soil water content and plant water stress in both agricultural areas and natural ecosystems. Statistical models were fitted to map soil water content in two areas: a natural marshland and a grassland-covered agricultural field. Our results demonstrate the statistical significance of topography, land surface temperature and red band reflectance in the natural area for retrieving soil water content. In contrast, the grasslands were best predicted by the transformed normalised difference vegetation index (TNDVI). Full article
Show Figures

Figure 1

14 pages, 5954 KB  
Article
Mapping Wet Areas and Drainage Networks of Data-Scarce Catchments Using Topographic Attributes
by Henrique Marinho Leite Chaves, Maria Tereza Leite Montalvão and Maria Rita Souza Fonseca
Water 2025, 17(15), 2298; https://doi.org/10.3390/w17152298 - 2 Aug 2025
Viewed by 368
Abstract
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, [...] Read more.
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, wet areas and small order channels of river networks are rarely mapped, although they represent a crucial component of local livelihoods and ecosystems. In this study, topographic attributes generated with a 30 m SRTM DEM were used to map wet areas and stream networks of two tropical catchments in Central Brazil. The topographic attributes for wet areas were the local slope and the slope curvature, and the Topographic Wetness Index (TWI) was used to delineate the stream networks. Threshold values of the selected topographic attributes were calibrated in the Santa Maria catchment, comparing the synthetically generated wet areas and drainage networks with corresponding reference (map) features, and validated in the nearby Santa Maria basin. Drainage network and wet area delineation accuracies were estimated using random basin transects and multi-criteria and confusion matrix methods. The drainage network accuracies were 67.2% and 70.7%, and wet area accuracies were 72.7% and 73.8%, for the Santa Maria and Gama catchments, respectively, being equivalent or higher than previous studies. The mapping errors resulted from model incompleteness, DEM vertical inaccuracy, and cartographic misrepresentation of the reference topographic maps. The study’s novelty is the use of readily available information to map, with simplicity and robustness, wet areas and channel initiation in data-scarce, tropical environments. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 2692 KB  
Article
Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources
by Alessia Nannoni, Pierfranco Lattanzi, Guia Morelli, Cesare Fagotti, Rossella Friani, Valentina Rimondi and Pilario Costagliola
Minerals 2025, 15(7), 678; https://doi.org/10.3390/min15070678 - 24 Jun 2025
Viewed by 924
Abstract
Previous studies documented the contribution of toxic elements (Hg, As, and Sb) from the dismissed Monte Amiata Mining District (Italy), the third largest Hg producer worldwide, to the Mediterranean Sea. Another highly toxic element, thallium (Tl), received less attention. Here we report a [...] Read more.
Previous studies documented the contribution of toxic elements (Hg, As, and Sb) from the dismissed Monte Amiata Mining District (Italy), the third largest Hg producer worldwide, to the Mediterranean Sea. Another highly toxic element, thallium (Tl), received less attention. Here we report a reconnaissance study of the spatial variability of Tl content in stream sediments across the Fiora River catchment, which drains part of the Hg and Sb mining districts. Thallium contents are comparatively low (≤0.4 mg/kg) in sediments of creeks directly draining the mining areas, whereas they increase up to 2 mg/kg in the catchment section that drains the Vulsini ultrapotassic volcanic province, where no known mineral deposits occur. Results suggest that Hg and Sb deposits cannot be the only Tl source in the catchment. The most likely alternative/additional candidate are the high-K volcanic rocks. Although no specific data for the Vulsini district exist, a distinct Tl geochemical anomaly linked to the Latium volcanic province is present. The total Tl mass contained in sediments discharged yearly into the Mediterranean Sea from the Fiora River is estimated in the order of 0.1 t. This reconnaissance study indicates a non-negligible potential release of Tl from the mining districts and volcanic catchments in Central Italy and suggests the opportunity of further investigation on Tl distribution and speciation in the area. Full article
Show Figures

Figure 1

21 pages, 5076 KB  
Article
Unravelling Landscape Evolution and Soil Erosion Dynamics in the Xynias Drained Lake Catchment, Central Greece: A GIS and RUSLE Modelling Approach
by Nikos Charizopoulos, Simoni Alexiou, Nikolaos Efthimiou, Emmanouil Psomiadis and Panagiotis Arvanitis
Sustainability 2025, 17(12), 5526; https://doi.org/10.3390/su17125526 - 16 Jun 2025
Viewed by 1459
Abstract
Understanding a catchment’s geomorphological and erosion processes is essential for sustainable land management and soil conservation. This study investigates the Xynias drained lake catchment in Central Greece using a twofold geospatial modelling approach that combines morphometric analysis with the Revised Universal Soil Loss [...] Read more.
Understanding a catchment’s geomorphological and erosion processes is essential for sustainable land management and soil conservation. This study investigates the Xynias drained lake catchment in Central Greece using a twofold geospatial modelling approach that combines morphometric analysis with the Revised Universal Soil Loss Equation (RUSLE) to evaluate the area’s landscape evolution, surface drainage features, and soil erosion processes. The catchment exhibits a sixth-order drainage network with a dendritic and imperfect pattern, shaped by historical lacustrine conditions and the carbonate formations. The basin has an elongated shape with steep slopes, high total relief, and a mean hypsometric integral value of 26.3%, indicating the area is at an advanced stage of geomorphic maturity. The drainage density and frequency are medium to high, reflecting the influence of the catchment’s relatively flat terrain and carbonate formations. RUSLE simulations also revealed mean annual soil loss to be 1.16 t ha−1 y−1 from 2002 to 2022, along with increased erosion susceptibility in hilly and mountainous areas dominated by natural vegetation. In comparison to these areas, agricultural regions displayed less erosion risk. These findings demonstrate the effectiveness of combining GIS with remote sensing for detecting erosion-prone areas, informing conservation initiatives. Along with the previously stated results, more substantial conservation efforts and active land management are required to meet the Sustainable Development Goals (SDGs) while considering the monitored land use changes and climate parameters for future catchment management. Full article
Show Figures

Figure 1

21 pages, 2609 KB  
Article
Perceptions of a Water Reservoir Construction Project Among the Local Community and Potential Tourists and Visitors
by Robert Machowski, Martyna A. Rzetala, Maksymilian Solarski, Mariusz Rzetala, Daniel Bakota, Arkadiusz Płomiński and Katarzyna Kłosowska
Sustainability 2025, 17(11), 4796; https://doi.org/10.3390/su17114796 - 23 May 2025
Viewed by 962
Abstract
A study was conducted concerning the perceptions of a future reservoir (4.7–8.9 square kilometres, 42.2 million cubic metres) by residents, tourists, and visitors; the location in question was the former Kotlarnia sand pit in the catchment area of the Bierawka River (tributary of [...] Read more.
A study was conducted concerning the perceptions of a future reservoir (4.7–8.9 square kilometres, 42.2 million cubic metres) by residents, tourists, and visitors; the location in question was the former Kotlarnia sand pit in the catchment area of the Bierawka River (tributary of the Oder River in southern Poland). Divergent concepts for the reclamation and development of the former sand pit emerged; the construction of a reservoir was initially the dominant option but was eventually abandoned despite it having the greatest acceptance among the respondents (out of the 134 respondents, 43.3% favoured the creation of a water reservoir, 29.9% favoured introducing nature protection arrangements in the area to enable spontaneous nature regeneration, and 16.4% favoured reforestation). A clear discrepancy arose between the public’s expectations related to the reclamation and development of the former sand pit in order to create a reservoir and the official position of the land user and administrator of the potential reservoir, which indicated that it no longer intended to create such a reservoir. This study indicates that in the process of developing concepts related to the reclamation and development of former mineral workings, it is essential to obtain the results of public consultation based on a diagnostic survey conducted among representatives of the local community. This is an effective tool for predicting the optimal use of sites regenerated after the damage caused by open-pit mining provided that all technical considerations related to the planned project are taken into account in advance. Full article
Show Figures

Figure 1

19 pages, 2485 KB  
Article
Contribution of Treated Sewage to Nutrients and PFAS in Rivers Within Australia’s Most Important Drinking Water Catchment
by Katherine G. Warwick, Michelle M. Ryan, Helen E. Nice and Ian A. Wright
Urban Sci. 2025, 9(6), 182; https://doi.org/10.3390/urbansci9060182 - 22 May 2025
Viewed by 1631
Abstract
This study investigated the contribution that treated effluent from five sewage treatment plants (STPs) made to water and sediment quality in rivers within Sydney’s Warragamba Dam catchment. Warragamba Dam is the main water supply for Australia’s largest city, supplying 90% of water for [...] Read more.
This study investigated the contribution that treated effluent from five sewage treatment plants (STPs) made to water and sediment quality in rivers within Sydney’s Warragamba Dam catchment. Warragamba Dam is the main water supply for Australia’s largest city, supplying 90% of water for >5 million people. The catchment rivers are important habitats for biodiversity. The study was prompted by an earlier investigation that discovered elevated perfluorooctane sulfonate PFOS in the liver of a platypus found in a river in the Warragamba catchment. At the site where the PFOS-contaminated platypus was collected, the river sediment had a maximum PFAS content of 8300 ng kg−1. This study collected water upstream and downstream of five STPs and from STP discharges. River sediment samples were collected downstream of STPs for per- and poly-fluoroalkyl substances (PFAS). Water attributes included major ions, salinity, nitrogen, phosphorus, metals, and PFAS. Our study confirmed that STP effluent discharges contributed to river nutrient concentrations favourable to algae. The mean total nitrogen (TN) below STP outfalls was 2820 µg L−1, exceeding catchment guideline (TN < 250 µg L−1) by an order of magnitude. PFAS were detected in 65% of STP effluent samples and in 76.5% of river sediment samples. Full article
Show Figures

Figure 1

26 pages, 9038 KB  
Article
River Radii: A Comparative National Framework for Remote Monitoring of Environmental Change at River Mouths
by Shane Orchard, Francois Thoral, Matt Pinkerton, Christopher N. Battershill, Rahera Ohia and David R. Schiel
Remote Sens. 2025, 17(8), 1369; https://doi.org/10.3390/rs17081369 - 11 Apr 2025
Viewed by 521
Abstract
River mouths are important indicators and mediators of interactions between rivers and the sea that mark the dispersal point for catchment-based stressors and subsidies. Satellite remote sensing data products and algorithms present many new possibilities for monitoring these dynamic and often inaccessible environments. [...] Read more.
River mouths are important indicators and mediators of interactions between rivers and the sea that mark the dispersal point for catchment-based stressors and subsidies. Satellite remote sensing data products and algorithms present many new possibilities for monitoring these dynamic and often inaccessible environments. In this study, we describe a national-scale comparative framework based on proximity to river mouths and show its application to the monitoring of coastal ecosystem health in Aotearoa New Zealand. We present results from light attenuation coefficient (Kd) analyses used to develop the framework considering data products of differing resolution and the effects of coastline geometries which might obscure the influence of catchment-derived stressors. Ten-year (2013–2022) Kd values from the highest-resolution product (500 m) showed significant differences (p < 0.01) in successively larger radii (1–20 km) despite the confounding influence of adjacent river mouths. Smaller radii returned a high variability that dropped markedly > 5 km. Tests of a 10 km radius showed that coastline geometry had a significant influence on Kd (p < 0.001), which is also likely for other water quality indicators. An analytical approach stratified by coastline geometry showed significant effects of stream order on open (p < 0.01) but not enclosed coasts, differences between marine bioregions (p < 0.05), and a degradation trend in the 90th percentile of Kd on enclosed coasts, which is indicative of extreme events associated with catchment erosion or sediment resuspension. We highlight applications of the framework to explore trends across many other meaningful scales (e.g., jurisdictions and ecosystem types) in addition to tracking changes at individual river mouths. Full article
Show Figures

Figure 1

16 pages, 1251 KB  
Article
Mixed-Methods Approach: Impact of Clinical Consenter Diversity on Clinical Trials Enrollment
by Angelica Sanchez, Christina M. Vidal, Noé Rubén Chávez, Nikita Jinna, Jackelyn Alva-Ornelas, Vanessa Myriam Robles, Cristal Resto, Nancy Sanchez, Dana Aljaber, Margarita Monge, Alicia Ramirez, Angela Reyes, Ernest Martinez, Veronica C. Jones, Jerneja Tomsic, Kendrick A. Davis and Victoria L. Seewaldt
Cancers 2025, 17(6), 1043; https://doi.org/10.3390/cancers17061043 - 20 Mar 2025
Viewed by 663
Abstract
Background: Clinical trials should benefit all people. Consequently, the National Cancer Institute expects cancer centers to accrue individuals to clinical trials in proportion to the cancer burden experienced by populations that live in their respective catchment areas; unfortunately, many cancer centers fail to [...] Read more.
Background: Clinical trials should benefit all people. Consequently, the National Cancer Institute expects cancer centers to accrue individuals to clinical trials in proportion to the cancer burden experienced by populations that live in their respective catchment areas; unfortunately, many cancer centers fail to meet this expectation. The person who gives consent for individuals in clinical trials frequently has significant contact with potential trial participants. We hypothesized that the race, ethnicity, and language of the consenter may have an important bearing on whether an individual chooses to participate in a clinical trial. Methods: We used mixed methods to investigate the impact of the socio-cultural background of the consenter on the decision of a potential research subject to participate in a clinical trial. Between 01/2018 and 02/2020, 205 women were approached in the sequential order they appeared in our breast clinic; of the 181 participants who agreed to complete the survey questionnaire, 94 (52%) were Northern European, non-Hispanic White (NE White), and 87 (48%) were Women-of-Color (WOC); this category includes participants who self-identified as Asian, Black, Hispanic/Latina, or Native American. Results: There were statistically significant differences according to the importance of the consenter’s characteristics in the decision to enroll or decline participation in the BCT. No NE White enroller (0%, n = 0) reported that consenter race was important versus 11% (n = 9) of WOC enrollers (p = 0.0009). Similarly, none of the NE White enrollers rated the consenter “looking like people in my community” as important versus 12% (n = 10) of the WOC enrollers (p = 0.0004). Conclusions: We find that consenter race and ethnicity are important for clinical trial diversity. Larger studies are needed to evaluate the generalizability of this finding. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Graphical abstract

21 pages, 13686 KB  
Article
Recreational and Landscape Preferences of Anglers in the Case of Lake Tisza
by Borbála Benkhard, Emőke Kiss, Péter Csorba, Dániel Balla, György Szabó, Tamás Mester, Róbert Vass, István Fazekas, Beáta Babka, Dávid Balázs and Mária Vasvári
Land 2025, 14(3), 600; https://doi.org/10.3390/land14030600 - 12 Mar 2025
Viewed by 1012
Abstract
Angling tourism is becoming increasingly important at Central Europe’s largest lowland reservoir, Lake Tisza. The lake, created in the 1970s, covers 127 km2 and has been increasingly used for recreational and nature conservation purposes recently. This study seeks to identify anglers’ site [...] Read more.
Angling tourism is becoming increasingly important at Central Europe’s largest lowland reservoir, Lake Tisza. The lake, created in the 1970s, covers 127 km2 and has been increasingly used for recreational and nature conservation purposes recently. This study seeks to identify anglers’ site selection preferences at Lake Tisza, considering hydrological and ecological aspects, in support of sustainable site management. In order to achieve this, an in-person questionnaire survey was carried out covering the whole area during springtime 2024. During the survey period, a total of 224 anglers provided answers about their preferred location and recreational characteristics. Data processing was carried out using SPSS 26 and ESRI ArcGIS version 10.4.1. Based on the created catchment area map, it was found that a significant proportion (74%) of anglers arrive from within a 50 km radius, but the lake also has appeal outside the country. A total of 53.1% of respondents visit the lake several times per month, typically for fishing purposes. In addition, cycling, walking and picnicking are popular recreational activities among anglers. The respondents considering different landscapes (pictures showed by the interviewers) for angling prefer shaded areas with vegetation and a narrow view of the wide expanse of water (62%). The results of the open-ended questions indicate that site selection is primarily based on the existence of a shadow (49.5%), and suitability for fishing is only the second aspect (40.6%). Our study also highlighted the international trend that anglers are more interested in leisure activities in a green environment. In addition, the results have practical significance for more successful recreation planning and sustainable site management. Full article
(This article belongs to the Special Issue Landscape-Scale Sustainable Tourism Development)
Show Figures

Figure 1

19 pages, 4538 KB  
Article
The Use of Fluorescent Organic Matter as a Natural Transit Time Tracer in the Unsaturated Zone of the Fontaine De Vaucluse Karst System
by Leïla Serène, Naomi Mazzilli, Christelle Batiot-Guilhe, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler and Matthieu Blanc
Hydrology 2025, 12(2), 24; https://doi.org/10.3390/hydrology12020024 - 1 Feb 2025
Cited by 1 | Viewed by 1089
Abstract
The fluorescence index called the Transit Time index (TTi) is based on the fluorescence of natural organic matter in order to qualitatively assess the transit time of karst groundwater, using springs affected by human activities. This study aims to further evaluate the potential [...] Read more.
The fluorescence index called the Transit Time index (TTi) is based on the fluorescence of natural organic matter in order to qualitatively assess the transit time of karst groundwater, using springs affected by human activities. This study aims to further evaluate the potential of fluorescent compounds as a natural tracer of transit time when applied to unsaturated zone flows with natural catchments, in contrast to the first study. For this purpose, a bi-monthly sampling of one year of monitoring for organic matter fluorescence, TOC, major elements and water-stable isotopes was performed. A conceptual model of the sources and fates of fluorescent compounds is built, emphasizing the allochthonous origin of humic-like C compounds, and the autochthonous production of humic-like M and protein-like compounds within the unsaturated zone. Fluorescent compound intensity interpretation according to this model reveals consistent relative transit times with flow behavior and also provides complementary information. The results also show the TTi’s ability to summarize fluorescent compounds, its consistency with relative transit time, and its higher sensitivity as compared to other natural tracers. However, prior to its use, a thorough assessment of soil organic matter, microbial activity, and potential anthropogenic contamination is required, encouraging interdisciplinary collaboration between hydrogeologists, microbiologists and soil scientists. Full article
Show Figures

Figure 1

30 pages, 3139 KB  
Article
Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland
by Monika Bryła, Iwona Zdralewicz, Iwona Lejcuś, Katarzyna Kraj, Grzegorz Dumieński, Tamara Tokarczyk and Tomasz Walczykiewicz
Sustainability 2025, 17(3), 1169; https://doi.org/10.3390/su17031169 - 31 Jan 2025
Viewed by 1711
Abstract
Climate change causes a problem for the energy system in Poland, which is based on the availability of water resources throughout the year. In situations of water scarcity resulting from increased demand or due to water deficits caused by the phenomenon of drought, [...] Read more.
Climate change causes a problem for the energy system in Poland, which is based on the availability of water resources throughout the year. In situations of water scarcity resulting from increased demand or due to water deficits caused by the phenomenon of drought, it is necessary to develop efficient management methods that take into account the needs of all stakeholders and obtaining approval for new investments. The principles of Integrated Water Resources Management (IWRM) enable this efficiency to be achieved. The research used 51 questions in 3 surveys to assess the potential for IWRM implementation in 3 catchments located in an area of southern and south-western Poland with different topography, regional and socio-economic characteristics, i.e., the Białka (tourism domination), the Nysa Kłodzka (potential for hydropower) and the Widawa (lowland character). In order to interpret the results, the author’s method of grouping survey questions from different sources was applied. The results of the study showed that there is considerable social potential and willingness to develop cooperation between different stakeholder groups but there are barriers related to the state of knowledge and its transfer between stakeholders. It is important not to ignore the stakeholders whose resistance can effectively delay investment processes. Full article
(This article belongs to the Special Issue Integrated Regional Energy Planning towards Sustainable Development)
Show Figures

Figure 1

22 pages, 18807 KB  
Article
Development of a New Method for Debris Flow Runout Assessment in 0-Order Catchments: A Case Study of the Otoishi River Basin
by Ahmad Qasim Akbar, Yasuhiro Mitani, Ryunosuke Nakanishi, Hiroyuki Honda and Hisatoshi Taniguchi
Geosciences 2025, 15(2), 41; https://doi.org/10.3390/geosciences15020041 - 25 Jan 2025
Viewed by 1513
Abstract
Debris flows are rapid, destructive landslides that pose significant risks in mountainous regions. This study presents a novel algorithm to simulate debris flow dynamics, focusing on sediment transport from 0-order basins to depositional zones. The algorithm integrates the D8 flow direction method with [...] Read more.
Debris flows are rapid, destructive landslides that pose significant risks in mountainous regions. This study presents a novel algorithm to simulate debris flow dynamics, focusing on sediment transport from 0-order basins to depositional zones. The algorithm integrates the D8 flow direction method with an adjustable friction coefficient to enhance the accuracy of debris flow trajectory and deposition modeling. Its performance was evaluated on three real-world cases in the Otoishi River basin, affected by rainfall-induced debris flows in July 2017, and the Aso Bridge landslide triggered by the 2016 Kumamoto Earthquake. By utilizing diverse friction coefficients, the study effectively captured variations in debris flow behavior, transitioning from fluid-like to more viscous states. Simulation results demonstrated a precision of 88.9% in predicting debris flow paths and deposition areas, emphasizing the pivotal role of the friction coefficient in regulating mass movement dynamics. Additionally, Monte Carlo (MC) simulations enhanced the identification of critical slip surfaces within 0-order basins, increasing the accuracy of debris flow source detection. This research offers valuable insights into debris flow hazards and risk mitigation strategies. The algorithm’s proven effectiveness in simulating real-world scenarios highlights its potential for integration into disaster risk assessment and prevention frameworks. By providing a reliable tool for hazard identification and prediction, this study supports proactive disaster management and aligns with the goals of sustainable development in regions prone to debris flow disasters. Full article
(This article belongs to the Special Issue Landslides Runout: Recent Perspectives and Advances)
Show Figures

Figure 1

21 pages, 12582 KB  
Article
Spatial Regularities of Changes in the Duration of Low River Flows in Poland Under Climate Warming Conditions
by Dariusz Wrzesiński, Andrzej A. Marsz, Anna Styszyńska, Adam Edmund Perz, Wiktoria Brzezińska and Leszek Sobkowiak
Water 2025, 17(2), 243; https://doi.org/10.3390/w17020243 - 16 Jan 2025
Viewed by 1356
Abstract
On the basis of daily discharges recorded in 140 water gauges located on 96 Polish rivers, the long-term changes of runoff and the number of days with low flows (NDLF) in relation to selected meteorological variables were studied. The analyses were [...] Read more.
On the basis of daily discharges recorded in 140 water gauges located on 96 Polish rivers, the long-term changes of runoff and the number of days with low flows (NDLF) in relation to selected meteorological variables were studied. The analyses were performed for the entire multi-annual period 1951–2020 and two sub-periods: 1951–1988 and 1988–2020 that are before and after climate change. The average values of these hydro-meteorological variables in the two sub-periods were then compared. It was found that after 1988, a statistically significant (p < 0.001) increase in the average air temperatures, ranging from 0.9 to over 1.3 °C, occurred. Similarly, statistically significant changes were determined for evaporation, which increased by about 10–25%. Precipitation did not show such changes—a statistically significant decrease in precipitation (by over 5%) was recorded only in the southern part of the Odra River basin, and in most stations, statistically insignificant increases were recorded. The most complex changes took place in river runoff. After 1988, in most gauges, a decrease in runoff by about 5–15% was detected; in some cases, these decreases were statistically significant. In the south-eastern part of the country, primarily in the catchments of the right tributaries of the Vistula River, an increase in runoff by about 5–10% was detected. However, only in the case of one gauge, these tendencies were statistically significant. Next, in order to determine spatial regularities in long-term changes in the NDLF, the cluster analysis method was used, and the gauges were grouped according to the values of 70 annual NDLF. This resulted in separating three relatively homogenous territorially groups of rivers, demonstrating a clear regional differentiation of NDLF. It was concluded that separation of these three groups of rivers in terms of different long-term changes in NDLF was mainly influenced by climatic conditions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

57 pages, 5169 KB  
Systematic Review
Systematic Synthesis of Knowledge Relating to the Hydrological Functioning of Inland Valleys in Sub-Saharan Africa
by Akominon M. Tidjani, Pierre G. Tovihoudji, Pierre B. Irénikatché Akponikpe and Marnik Vanclooster
Water 2025, 17(2), 193; https://doi.org/10.3390/w17020193 - 12 Jan 2025
Viewed by 1343
Abstract
The potential of inland valleys to enhance food security and improve agricultural resilience to climate change in Africa is constrained by a limited understanding of their hydrological functioning and inadequate water management. In order to synthesize knowledge on hydrological responses in inland valley [...] Read more.
The potential of inland valleys to enhance food security and improve agricultural resilience to climate change in Africa is constrained by a limited understanding of their hydrological functioning and inadequate water management. In order to synthesize knowledge on hydrological responses in inland valley areas, this work reviewed 275 studies from tropical Sub-Saharan Africa (SSA). Data from the literature search were collected from Scopus™, ScienceDirect™, Web of Science™, Google Scholar™, and doctoral theses repositories such as ZEF, HAL, and Theses.fr, covering studies published from the inception of these databases through 31 May 2023. Our approach involved, firstly, a bibliometric analysis of all papers to gain insights into research trends and interests. Secondly, we performed a quantitative synthesis of results from 66 studies examining stream flows in a set of 79 inland valleys to better understand factors that govern runoff dynamics in these environments. Correlative analyses and clustering methods were applied to identify potential links between runoff and watershed physical parameters. The findings highlight the varied responses of inland valleys over both time and space, influenced by a combination of catchment drivers. The correlation matrices between hydrological indices and physical parameters indicate a strong relationship among runoff and a range of parameters, of which the most significant are rainfall (R2 = 0.77) and soil silt content (R2 = 0.68). Challenges in accurately spatializing information related to potential determining components of the water cycle, such as groundwater dynamics and soil moisture, seem to have limited the exploration of interactions between river flow, soil moisture, and groundwater. Future works should prioritize the development of accurate and user-friendly hydrological models that balance complexity and data availability to enhance the understanding of inland valley behavior at fine scales and consolidate food security in Africa. Full article
Show Figures

Figure 1

Back to TopTop