Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = 3D body scanners

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 552 KB  
Systematic Review
The Effects of Scan Body Geometry on the Precision and the Trueness of Implant Impressions Using Intraoral Scanners: A Systematic Review
by Roksana Mohajerani, Shirin Djalalinia and Marzieh Alikhasi
Dent. J. 2025, 13(6), 252; https://doi.org/10.3390/dj13060252 - 5 Jun 2025
Viewed by 1621
Abstract
Background/Objectives: Accurate implant impressions are critical for capturing the three-dimensional (3D) spatial positioning of implants. Digital workflows using intraoral scanners (IOSs) and scan bodies offer distinct advantages over conventional elastomeric techniques. However, the geometry of scan bodies may influence the precision and trueness [...] Read more.
Background/Objectives: Accurate implant impressions are critical for capturing the three-dimensional (3D) spatial positioning of implants. Digital workflows using intraoral scanners (IOSs) and scan bodies offer distinct advantages over conventional elastomeric techniques. However, the geometry of scan bodies may influence the precision and trueness of IOS-acquired data, and optimal design parameters remain undefined. This systematic review aims to evaluate the effects of scan body geometry on the trueness of digital implant impressions captured using IOSs. Methods: A systematic search was conducted across PubMed, Scopus, EMBASE, Web of Science, the Cochrane Library, and Google Scholar up to 25 February 2025. Eligible studies assessed the impact of scan body geometry on the accuracy of implant-level impressions acquired with IOSs. Study quality was assessed using the Quality Assessment Tool for In Vitro Studies of Dental Materials (QUIN). Results: Twenty-eight studies were included, of which twenty-six were in vitro. The included studies, published between 2020 and 2025, demonstrated that variations in macro- and micro-geometries influenced both linear and angular trueness. Cylindrical designs with optimal dimensions generally outperformed cuboidal or spherical forms. Structural modifications, such as rigid bar extensions and surface facets, often improved scan accuracy. Some hybrid or modified designs performed comparably to conventional scan bodies. According to QUIN, 27 studies were moderate quality and one had high quality. Conclusions: Scan body geometry affected the accuracy of intraoral implant digital impressions. Designs featuring rigid extensions or simplified geometries improve trueness and precision. Further standardized clinical studies are needed to define optimal design features and validate current in vitro findings. Full article
Show Figures

Figure 1

15 pages, 2840 KB  
Article
Microsurgical Lymphatic Vessel Transplantation for Chronic Lymphedema: Long-Term Evaluation of Volume Reduction and Lymphatic Transport Kinetics
by Wolfram Demmer, Louisa Antonie Hock, Konstantin Christoph Koban, Paul Severin Wiggenhauser, Matthias Brendel, Riccardo Giunta and Tim Nürnberger
Life 2025, 15(6), 914; https://doi.org/10.3390/life15060914 - 4 Jun 2025
Viewed by 825
Abstract
This study investigates long-term volume reduction after microsurgical autologous lymphatic vessel transplantation (LVT) in patients with chronic lymphoedema. Lymphoedema is caused by inadequate lymphatic drainage and leads to swelling, pain, and a reduced quality of life. Conservative treatments often show only limited success, [...] Read more.
This study investigates long-term volume reduction after microsurgical autologous lymphatic vessel transplantation (LVT) in patients with chronic lymphoedema. Lymphoedema is caused by inadequate lymphatic drainage and leads to swelling, pain, and a reduced quality of life. Conservative treatments often show only limited success, which is why surgical procedures such as LVT are increasingly gaining in importance. In a retrospective long-term analysis, patients who underwent LVT between 1988 and 2010 were examined on average 21.7 years after surgery. The examination included pre- and post-operative volume measurements, which were supplemented by modern 3D body scanner analyses and lymphoscintigraphy. The results show a significant volume reduction both in the short term (p < 0.01) and at the follow-up examination (p = 0.04). There was no significant difference between manual volumetry with circumferential measurements and 3D volumetry (p = 0.775). The improvement in lymph transport capacity was considerable (p = 0.078). This study provides valuable insights for the further development of lymphatic surgery. While preferred surgical methods change over time, this study demonstrates that LVT can make a decisive contribution to improving the quality of life of lymphedema patients. Full article
Show Figures

Figure 1

10 pages, 1343 KB  
Article
Accuracy and Precision of Digital Impression with Reverse Scan Body Prototypes and All-on-4 Protocol: An In Vitro Research
by Marco Tallarico, Mohammad Qaddomi, Elena De Rosa, Carlotta Cacciò, Yeo Jin Jung, Silvio Mario Meloni, Francesco Mattia Ceruso, Aurea Immacolata Lumbau and Milena Pisano
Prosthesis 2025, 7(2), 36; https://doi.org/10.3390/prosthesis7020036 - 31 Mar 2025
Viewed by 1644
Abstract
Background/Objectives: Digital workflows for implant-supported full-arch restorations remain challenging. This study evaluated the accuracy and precision of digital impressions using reverse scan body (RSB) prototypes and intraoral scanners (IOSs) for rehabilitating fully edentulous patients following the All-on-4 protocol. Secondary objectives included comparing accuracy [...] Read more.
Background/Objectives: Digital workflows for implant-supported full-arch restorations remain challenging. This study evaluated the accuracy and precision of digital impressions using reverse scan body (RSB) prototypes and intraoral scanners (IOSs) for rehabilitating fully edentulous patients following the All-on-4 protocol. Secondary objectives included comparing accuracy between expert clinicians and beginners, as well as desktop scanners and various RSB designs. Methods: An in vitro study was conducted using a fully edentulous mandible model with four Osstem TSIII implants. A final-year dental student and an expert clinician captured digital impressions using IOSs and desktop scanners. Four groups were analyzed: (A) original scan bodies with the IOS, (B) short RSBs with the IOS, (C) RSBs with desktop scanners (short sandblasted, long sandblasted, long coated), and (D) a control group using original scan bodies with a desktop scanner. Root mean square (RMS) values measured dimensional differences, with statistical analysis performed using the Wilcoxon signed-rank test and one-way ANOVA (α = 0.05). Results: A total of 42 scans were analyzed. No significant difference was found between expert and student for original scan bodies using the IOS (p = 0.220), while RSB prototypes showed significant differences (p = 0.008). No significant accuracy differences were noted between original scan bodies and RSBs with the IOS, but IOSs outperformed desktop scanners. Among RSBs scanned with desktop scanners, no significant differences were observed between designs. Conclusions: RSB prototypes are a viable alternative to original scan bodies for fully digital workflows in All-on-4 rehabilitations, with IOSs offering superior accuracy. However, proper training is crucial for optimizing RSB accuracy. Variations in height and coating did not impact overall accuracy. Full article
Show Figures

Figure 1

22 pages, 1300 KB  
Systematic Review
Emerging Roles of 3D Body Scanning in Human-Centric Applications
by Mahendran Balasubramanian and Pariya Sheykhmaleki
Technologies 2025, 13(4), 126; https://doi.org/10.3390/technologies13040126 - 24 Mar 2025
Cited by 1 | Viewed by 4124
Abstract
The three-dimensional (3D) body scanning technology has impacted various fields, from digital anthropometry to healthcare. This paper provides an exhaustive review of the existing literature on applications of 3D body scanning technology in human-centered work. Our systematic analysis of Web of Science and [...] Read more.
The three-dimensional (3D) body scanning technology has impacted various fields, from digital anthropometry to healthcare. This paper provides an exhaustive review of the existing literature on applications of 3D body scanning technology in human-centered work. Our systematic analysis of Web of Science and Scopus journal articles revealed six critical themes: product development, healthcare, body shape, anthropometric measurement, avatar creation, and body image. Three-dimensional body scanning technology is used to design and develop ergonomically coherent and fit products. In addition to its application in clothing, footwear, and furniture, its non-invasive and rapid image-capturing capabilities make it an attractive tool for clinical diagnostics and evaluations in healthcare. Given the exponential growth of digital interfaces, 3D avatars and body forms have gained popularity, and scanners facilitate their growth and adoption. The creation of anthropometric databases for various populations, from children to boomers and from adolescents to pregnant women, has been made possible with body scanning technology and has been helpful in several applications. This review highlights the growing importance of 3D body scanning technology in various contexts and provides a foundation for researchers and practitioners seeking to understand its utility and implications. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

14 pages, 12546 KB  
Article
Increasing Wear Resistance of Ploughshare by Electrofriction Treatment
by Zhuldyz Sagdoldina, Daryn Baizhan, Nurbol Berdimuratov, Malgorzata Rutkowska-Gorczyca, Meruert Maulet and Sanzhar Bolatov
Coatings 2024, 14(12), 1529; https://doi.org/10.3390/coatings14121529 - 4 Dec 2024
Cited by 1 | Viewed by 1392
Abstract
Surface layers of agricultural machinery working bodies are subjected to intensive abrasive wear during operation, which leads to rapid wear of equipment and reduction of its service life. To increase the wear resistance of the working surfaces of tools, the method of induction [...] Read more.
Surface layers of agricultural machinery working bodies are subjected to intensive abrasive wear during operation, which leads to rapid wear of equipment and reduction of its service life. To increase the wear resistance of the working surfaces of tools, the method of induction cladding using ‘Sormait-1’ materials is widely used. However, after coating, additional heat treatment is required, which improves physical and mechanical properties of the material and increases its durability. When using electrofriction technology (EFT) hardening, the surface of the parts is subjected to melting under the influence of electric arcs, which affects the surface characteristics of the coatings. In this work, two types of surface treatment of L53 steel were investigated: induction cladding using ‘Sormait-1’ material, as well as a combination of induction cladding and subsequent electrofriction treatment. The coatings were characterized and compared with the substrate in terms of the following parameters: microstructure, phase composition, hardness distribution, and friction-wear characteristics. After induction cladding of the Sormait-1 material, a dendritic structure was formed; however, subsequent electrofriction treatment resulted in a reduction of this dendritic structure, which contributed to an increase in the hardness of the material. The average hardness of the coatings after electrofriction treatment was 786 HV0.1, which is more than three times the hardness of the substrate. Furthermore, the influence of structural characteristics and hardness on abrasive wear resistance was examined in accordance with ASTM G65 international standards. Field tests were conducted on plough shares before and after electrofriction hardening to evaluate their performance. Each ploughshare was scanned with a structured 3D scanner before and after use in the field. From the scan data, the cutting-edge profile was calculated and three key parameters were determined: linear wear, volumetric wear, and mass reduction. According to the results of field tests, it was found that the service life of the blades hardened by electrofriction technology was 12%–14% higher compared to serial blades processed by induction cladding with the use of ‘Sormait-1’ material. Operational tests of hardened plough shares confirmed the results of laboratory tests and proved the advantages of electrofriction technology for increasing the wear resistance of soil tillage machine working bodies. Full article
(This article belongs to the Special Issue Advances in Wear-Resistant Coatings)
Show Figures

Figure 1

19 pages, 4858 KB  
Article
Assessment of the Mechanical Properties and Fragment Characteristics of a 3D-Printed Forearm Orthosis
by Mislav Majdak, Slavica Bogović, Maja Somogyi Škoc and Iva Rezić Meštrović
Polymers 2024, 16(23), 3349; https://doi.org/10.3390/polym16233349 - 29 Nov 2024
Viewed by 1176
Abstract
Distal radius fractures (DRF) are one of the most prevalent injuries a person may sustain. The current treatment of DRF involves the use of casts made from Plaster of Paris or fiberglass. The application of these materials is a serious endeavor that influences [...] Read more.
Distal radius fractures (DRF) are one of the most prevalent injuries a person may sustain. The current treatment of DRF involves the use of casts made from Plaster of Paris or fiberglass. The application of these materials is a serious endeavor that influences their intended use, and should be conducted by specially trained personnel. In this research, with the use of the full-body 3D scanner Vitus Smart, 3D modelling software Rhinoceros 3D, and 3D printer Creality CR-10 max, an easy, yet effective workflow of orthosis fabrication was developed. Furthermore, samples that represent segments of the orthosis were subjected to static loading. Lastly, fragments that occurred due to excessive force were characterized with the use of a digital microscope. It was observed that with the implementation of the designed workflow, a faster 3D printing process was present. Samples subjected to mechanical loading had values that exceeded those of conventional Plaster of Paris; the minimum recorded value was 681 N, while the highest was 914 N. Microscopic characterization enabled a clear insight into the occurrence of fragments, as well as their potential risk. Therefore, in this research, an insight into different stages of fabrication, characterization of undesirable events, as well as the risks they may pose were presented. Full article
Show Figures

Figure 1

15 pages, 302 KB  
Article
Rapid Assessment of Morphological Asymmetries Using 3D Body Scanner and Bioelectrical Impedance Technologies in Sports: A Case of Comparative Analysis Among Age Groups in Judo
by Jožef Šimenko, Hrvoje Sertić, Ivan Segedi and Ivan Čuk
Symmetry 2024, 16(10), 1387; https://doi.org/10.3390/sym16101387 - 18 Oct 2024
Viewed by 1849
Abstract
(1) Background: The advancement of technologies has made morphological assessment rapid and reliable. A combination of 3D body scanning (3D-BS) and bioelectrical impedance (BIA) could be essential in monitoring the morphological status of athletes and the general population and their symmetries for coaches, [...] Read more.
(1) Background: The advancement of technologies has made morphological assessment rapid and reliable. A combination of 3D body scanning (3D-BS) and bioelectrical impedance (BIA) could be essential in monitoring the morphological status of athletes and the general population and their symmetries for coaches, researchers and medical professionals. (2) Methods: The current study presents the use of Inbody-720 BIA and 3D-BS NX-16 for analyzing the asymmetry profile of an athlete in 2 min on a sample of 106 male judo competitors from the following age categories: older boys—U14 (N = 24), younger cadets—U16 (N = 31), cadets—U18 (N = 17), juniors—U21 (N = 19) and seniors (N = 15). Variables observed were arm lean mass, upper arm, elbow, forearm and wrist girth, leg lean mass, thigh length, thigh, knee and calf girth. The paired sample t-test, asymmetry index (AI) and Kruskal–Wallis analysis were used at p ≤ 0.05; (3) Results: Morphological asymmetries were detected in all age categories: seniors—three, U21—four, U18—three, U16—five and U14—four. The most common asymmetrical variable in all categories was the forearm girth, while thigh length, knee girth and upper arm girth presented symmetrical variables in all age categories. AI showed that the size of the asymmetries did not differentiate between the age groups. (4) Conclusions: The current study demonstrated great potential for combining BIA and 3D-BS for rapid asymmetry detection that would allow for monitoring and quick adjustments to the training process in youth to senior age categories. Full article
(This article belongs to the Special Issue Application of Symmetry in Biomechanics)
11 pages, 4656 KB  
Article
Mechanically Adjustable 4-Channel RF Transceiver Coil Array for Rat Brain Imaging in a Whole-Body 7 T MR Scanner
by Sigrun Roat, Lena Nohava and Elmar Laistler
Sensors 2024, 24(16), 5377; https://doi.org/10.3390/s24165377 - 20 Aug 2024
Viewed by 1456
Abstract
Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution [...] Read more.
Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution data. Ultra-high-field (≥7 T) whole-body human scanners are increasingly available, and they can also be used for animal investigations. Dedicated sensors, in this case, radiofrequency coils, are required to achieve sufficient sensitivity for the high spatial resolution needed for imaging small anatomical structures. In this work, a four-channel transceiver coil array for rat brain imaging at 7 T is presented, which can be adjusted for use on a wide range of differently sized rats, from infants to large adults. Three suitable array designs (with two to four elements covering the whole rat brain) were compared using full-wave 3D electromagnetic simulation. An optimized static B1+ shim was derived to maximize B1+ in the rat brain for both small and big rats. The design, together with a 3D-printed adjustable coil housing, was tested and validated in ex vivo rat bench and MRI measurements. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

18 pages, 1758 KB  
Article
A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare
by Junyong So, Sekyoung Youm and Sojung Kim
Appl. Sci. 2024, 14(16), 7107; https://doi.org/10.3390/app14167107 - 13 Aug 2024
Cited by 2 | Viewed by 2135
Abstract
The global healthcare market is expanding, with a particular focus on personalized care for individuals who are unable to leave their homes due to the COVID-19 pandemic. However, the implementation of personalized care is challenging due to the need for additional devices, such [...] Read more.
The global healthcare market is expanding, with a particular focus on personalized care for individuals who are unable to leave their homes due to the COVID-19 pandemic. However, the implementation of personalized care is challenging due to the need for additional devices, such as smartwatches and wearable trackers. This study aims to develop a human body simulation that predicts and visualizes an individual’s 3D body changes based on 2D images taken by a portable device. The simulation proposed in this study uses semantic segmentation and image-based reconstruction techniques to preprocess 2D images and construct 3D body models. It also considers the user’s exercise plan to enable the visualization of 3D body changes. The proposed simulation was developed based on human-in-the-loop experimental results and literature data. The experiment shows that there is no statistical difference between the simulated body and actual anthropometric measurement with a p-value of 0.3483 in the paired t-test. The proposed simulation provides an accurate and efficient estimation of the human body in a 3D environment, without the need for expensive equipment such as a 3D scanner or scanning uniform, unlike the existing anthropometry approach. This can promote preventive treatment for individuals who lack access to healthcare. Full article
(This article belongs to the Special Issue State-of-the-Art of Computer Vision and Pattern Recognition)
Show Figures

Figure 1

12 pages, 596 KB  
Review
Digital Biometry as an Obesity Diagnosis Tool: A Review of Current Applications and Future Directions
by Florence Porterfield, Vladyslav Shapoval, Jérémie Langlet, Hanen Samouda and Fatima Cody Stanford
Life 2024, 14(8), 947; https://doi.org/10.3390/life14080947 - 28 Jul 2024
Cited by 4 | Viewed by 2544
Abstract
Obesity is a chronic relapsing disease and a major public health concern due to its high prevalence and associated complications. Paradoxically, several studies have found that obesity might positively impact the prognosis of patients with certain existing chronic diseases, while some individuals with [...] Read more.
Obesity is a chronic relapsing disease and a major public health concern due to its high prevalence and associated complications. Paradoxically, several studies have found that obesity might positively impact the prognosis of patients with certain existing chronic diseases, while some individuals with normal BMI may develop obesity-related complications. This phenomenon might be explained by differences in body composition, such as visceral adipose tissue (VAT), total body fat (TBF), and fat-free mass (FFM). Indirect measures of body composition such as body circumferences, skinfold thicknesses, and bioelectrical impedance analysis (BIA) devices are useful clinically and in epidemiological studies but are often difficult to perform, time-consuming, or inaccurate. Biomedical imaging methods, i.e., computerized tomography scanners (CT scan), dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging (MRI), provide accurate assessments but are expensive and not readily available. Recent advancements in 3D optical image technology offer an innovative way to assess body circumferences and body composition, though most machines are costly and not widely available. Two-dimensional optical image technology might offer an interesting alternative, but its accuracy needs validation. This review aims to evaluate the efficacy of 2D and 3D automated body scan devices in assessing body circumferences and body composition. Full article
Show Figures

Figure 1

11 pages, 2687 KB  
Article
Angle Dependence of Electrode Lead-Related Artifacts in Single- and Dual-Energy Cardiac ECG-Gated CT Scanning—A Phantom Study
by Piotr Tarkowski, Elżbieta Siek, Grzegorz Staśkiewicz, Dennis K. Bielecki and Elżbieta Czekajska-Chehab
J. Clin. Med. 2024, 13(13), 3746; https://doi.org/10.3390/jcm13133746 - 27 Jun 2024
Cited by 1 | Viewed by 1718
Abstract
Background: The electrodes of implantable cardiac devices (ICDs) may cause significant problems in cardiac computed tomography (CT) because they are a source of artifacts that obscure surrounding structures and possible pathology. There are a few million patients currently with ICDs, and some [...] Read more.
Background: The electrodes of implantable cardiac devices (ICDs) may cause significant problems in cardiac computed tomography (CT) because they are a source of artifacts that obscure surrounding structures and possible pathology. There are a few million patients currently with ICDs, and some of these patients will require cardiac imaging due to coronary artery disease or problems with ICDs. Modern CT scanners can reduce some of the metal artifacts because of MAR software, but in some vendors, it does not work with ECG gating. Introduced in 2008, dual-energy CT scanners can generate virtual monoenergetic images (VMIs), which are much less susceptible to metal artifacts than standard CT images. Objective: This study aimed to evaluate if dual-energy CT can reduce metal artifacts caused by ICD leads by using VMIs. The second objective was to determine how the angle between the electrode and the plane of imaging affects the severity of the artifacts in three planes of imaging. Methods: A 3D-printed model was constructed to obtain a 0–90-degree field at 5-degree intervals between the electrode and each of the planes: axial, coronal, and sagittal. This electrode was scanned in dual-energy and single-energy protocols. VMIs with an energy of 40–140 keV with 10 keV intervals were reconstructed. The length of the two most extended artifacts originating from the tip of the electrode and 2 cm above it—at the point where the thick metallic defibrillating portion of the electrode begins—was measured. Results: For the sagittal plane, these observations were similar for both points of the ICDs that were used as the reference location. VMIs with an energy over 80 keV produce images with fewer artifacts than similar images obtained in the single-energy scanning mode. Conclusions: Virtual monoenergetic imaging techniques may reduce streak artifacts arising from ICD electrodes and improve the quality of the image. Increasing the angle of the electrode as well as the imaging plane can reduce artifacts. The angle between the electrode and the beam of X-rays can be increased by tilting the gantry of the scanner or lifting the upper body of the patient. Full article
Show Figures

Figure 1

16 pages, 4549 KB  
Article
Comparison between Conventional and Digital Impressions for Determining Axes and Distances of Three Implants in Straight and Curved Lines: An In Vitro Study
by Gil Ben-Izhack, Ophir Rosner, Eran Zenziper, Joseph Nissan, Reema Hosary, Diva Lugassy and Asaf Shely
J. Clin. Med. 2024, 13(8), 2352; https://doi.org/10.3390/jcm13082352 - 18 Apr 2024
Cited by 2 | Viewed by 2181
Abstract
Background: In this study, we aimed to compare the effects of conventional and digital impressions on several parameters (inter-implant distance, intra-implant distance, inter-implant axis, and intra-implant axis) of three implants in curved lines and straight lines by using a laboratory scanner (LBS) [...] Read more.
Background: In this study, we aimed to compare the effects of conventional and digital impressions on several parameters (inter-implant distance, intra-implant distance, inter-implant axis, and intra-implant axis) of three implants in curved lines and straight lines by using a laboratory scanner (LBS) versus an intra-oral scanner (IOS). Methods: Two 3D models were fabricated using a printer, each model with three internal hex implants analogues at the positions of 15#,16#,17# (straight line) and 12#,13#,14# (curved line). Standard intra-oral scan bodies (ISBs) were used, and the two models were scanned using 7 Series dental wings (LBS, reference model), followed by ten scans with Primescan (digital method). Standard Tessellation Language (STL) files were created. Five polyether impressions were taken from each model (straight and curved), and gypsum type 4 models were poured; each model was scanned five times to create a total of 25 STL files for each group (conventional method). The comparison between all the STL files (conventional and digital) was made by superimposition of the STL files on the STL reference model laboratory file using a 3D analyzing software. A Kolmogorov–Smirnov test was performed, followed by Mann–Whitney tests and Wilcoxon signed-rank tests. (p < 0.05). Results: For the conventional method, the mean errors were significantly higher for the curved line model (12–14) compared to the straight line model (15–17) for most parameters (p < 0.05). For the digital method, the mean errors were significantly higher for the curved-line model (12–14) compared to the straight line model (15–17) in half of the parameters (p < 0.05). Within the curved line model (12–14) and the straight line model (15–17), the mean errors between the conventional method and the digital method were not significant for most variables. Conclusions: The difference between curved lines and straight lines has an impact on the mean error of the conventional method. Both methods are reliable for straight and curved lines in partially dentate situations. Full article
Show Figures

Figure 1

15 pages, 6261 KB  
Article
Limb Volume Measurements: A Comparison of Circumferential Techniques and Optoelectronic Systems against Water Displacement
by Giovanni Farina, Manuela Galli, Leonardo Borsari, Andrea Aliverti, Ioannis Th. Paraskevopoulos and Antonella LoMauro
Bioengineering 2024, 11(4), 382; https://doi.org/10.3390/bioengineering11040382 - 15 Apr 2024
Cited by 7 | Viewed by 3081
Abstract
Background. Accurate measurements of limb volumes are important for clinical reasons. We aimed to assess the reliability and validity of two centimetric and two optoelectronic techniques for limb volume measurements against water volumetry, defined as the gold standard. Methods. Five different measurement methods [...] Read more.
Background. Accurate measurements of limb volumes are important for clinical reasons. We aimed to assess the reliability and validity of two centimetric and two optoelectronic techniques for limb volume measurements against water volumetry, defined as the gold standard. Methods. Five different measurement methods were executed on the same day for each participant, namely water displacement, fixed-height (circumferences measured every 5 (10) cm for the upper (lower limb) centimetric technique, segmental centimetric technique (circumferences measured according to proportional height), optoelectronic plethysmography (OEP, based on a motion analysis system), and IGOODI Gate body scanner technology (which creates an accurate 3D avatar). Results. A population of 22 (15 lower limbs, 11 upper limbs, 8 unilateral upper limb lymphoedema, and 6 unilateral lower limb lymphoedema) participants was selected. Compared to water displacement, the fixed-height centimetric method, the segmental centimetric method, the OEP, and the IGOODI technique resulted in mean errors of 1.2, 0.86, −16.0, and 0.71%, respectively. The corresponding slopes (and regression coefficients) of the linear regression lines were 1.0002 (0.98), 1.0047 (0.99), 0.874 (0.94) and 0.9966 (0.99). Conclusion. The centimetric methods and the IGOODI system are accurate in measuring limb volume with an error of <2%. It is important to evaluate new objective and reliable techniques to improve diagnostic and follow-up possibilities. Full article
(This article belongs to the Special Issue Optical Techniques for Biomedical Engineering)
Show Figures

Figure 1

11 pages, 3047 KB  
Article
Elastic Compression Dressing after Total Hip Replacement Slightly Reduces Leg Swelling: A Randomized Controlled Trial
by Sebastian Rohe, Sabrina Böhle, Georg Matziolis, Frank Layher and Steffen Brodt
J. Clin. Med. 2024, 13(8), 2207; https://doi.org/10.3390/jcm13082207 - 11 Apr 2024
Cited by 1 | Viewed by 1976
Abstract
Background: Even minor adverse reactions after total hip replacement (THR), including lymphedema, postoperative leg swelling, and blood loss, compromise patient comfort in times of minimally invasive fast-track surgery. Compression dressings are commonly used in surgical practice to reduce swelling or blood loss. [...] Read more.
Background: Even minor adverse reactions after total hip replacement (THR), including lymphedema, postoperative leg swelling, and blood loss, compromise patient comfort in times of minimally invasive fast-track surgery. Compression dressings are commonly used in surgical practice to reduce swelling or blood loss. However, the use of spica hip compression dressings after primary THR is controversial, and prospective studies are lacking. Methods: We conducted a prospective, single-center, two-arm, randomized controlled trial (RCT) of patients undergoing THR for primary osteoarthritis. A total of 324 patients were enrolled; 18 patients were excluded, and 306 patients were finally analyzed. Leg swelling as primary endpoint was measured pre- and postoperatively with a rotating 3D infrared body scanner. Secondary endpoints were transfusion rate and blood loss, estimated by Nadler and Gross formulas. Results: Postoperative leg swelling was lower in the compression group (241 ± 234 mL vs. 307 ± 287 mL; p = 0.01), even after adjustment for surgery time and Body-Mass-Index (BMI) (p = 0.04). Estimated blood loss was also lower in the compression group on the first (428 ± 188 mL vs. 462 ± 178 mL; p = 0.05) and third (556 ± 247 mL vs. 607 ± 251 mL; p = 0.04) postoperative days and leveled off on the fifth postoperative day, but lost significance after adjustment for BMI and surgery time. Neither group received a transfusion. Conclusions: Compression dressing after THR in the context of minimally invasive surgery slightly reduces leg swelling, but has no effect on blood loss or blood transfusion rate. So, this method could not generally be recommended in primary hip replacement. Full article
(This article belongs to the Special Issue State of the Art in Hip Replacement Surgery)
Show Figures

Figure 1

12 pages, 3423 KB  
Article
AI Somatotype System Using 3D Body Images: Based on Deep-Learning and Transfer Learning
by Jiwun Yoon, Sang-Yong Lee and Ji-Yong Lee
Appl. Sci. 2024, 14(6), 2608; https://doi.org/10.3390/app14062608 - 20 Mar 2024
Cited by 6 | Viewed by 3128
Abstract
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one’s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artificial intelligence technology utilizing noninvasive measurement tools, [...] Read more.
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one’s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artificial intelligence technology utilizing noninvasive measurement tools, such as 3D body scanner, which minimize physical contact. The purpose of this study was to develop an artificial intelligence somatotype system capable of predicting the three body types proposed by Heath-Carter’s somatotype theory using 3D body images collected using a 3D body scanner. To classify body types, measurements were taken to determine the three somatotype components (endomorphy, mesomorphy, and ectomorphy). MobileNetV2 was utilized as the transfer learning model. The results of this study are as follows: first, the AI somatotype model showed good performance, with a training accuracy around 91% and a validation accuracy around 72%. The respective loss values were 0.26 for the training set and 0.69 for the validation set. Second, validation of the model’s performance using test data resulted in accurate predictions for 18 out of 21 new data points, with prediction errors occurring in three cases, indicating approximately 85% classification accuracy. This study provides foundational data for subsequent research aiming to predict 13 detailed body types across the three body types. Furthermore, it is hoped that the outcomes of this research can be applied in practical settings, enabling anyone with a smartphone camera to identify various body types based on captured images and predict obesity and diseases. Full article
(This article belongs to the Special Issue Advances in Image Recognition and Processing Technologies)
Show Figures

Figure 1

Back to TopTop