Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = 3D ground reaction forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 580 KB  
Article
Relationship Between Incidence of Knee Pain and Ground Reaction Force During Stepping Motion in Older Adults
by Yusuke Oyama, Koki Ishikawa, Toshio Murayama and Tamaki Ohta
Geriatrics 2025, 10(5), 126; https://doi.org/10.3390/geriatrics10050126 - 23 Sep 2025
Viewed by 147
Abstract
Background: This 2-year longitudinal study was undertaken to investigate the relationship between incidence of knee pain and ground reaction force (GRF) in stepping motion in older adults. Methods: In all, 29 older participants, aged 50 and over (11 males and 18 females; 63.0 [...] Read more.
Background: This 2-year longitudinal study was undertaken to investigate the relationship between incidence of knee pain and ground reaction force (GRF) in stepping motion in older adults. Methods: In all, 29 older participants, aged 50 and over (11 males and 18 females; 63.0 ± 6.2 years), presented without knee pain at baseline. The participants performed a 10 s stepping motion at optimal speed on a force plate, and 14 mechanical and temporal parameters of vertical GRF were obtained. Knee pain was evaluated based on subjective complaint during daily activities. The participants were classified into a no pain (NP) group or a knee pain (KP) group. Results: Of the 29 participants (11 males, 18 females), 9 (all female) developed knee pain, representing 31.0% of the total participants and comprising the KP group at the follow-up. We compared the amount of change in the evaluated parameters between the two groups and found moderate effect sizes for the mechanical parameters, ΔMshaped (p = 0.07, d = 0.77) and ΔF2 (p = 0.08, d = 0.72), as well as a flatter change in the bimodal waveform of the GRF in the KP group. Conclusions: It was thus suggested that a flattening of the vertical GRF waveform during stepping motion may indicate early biomechanical changes associated with incident knee pain and that waveform changes in GRF may be useful for early detection of functional decline. Full article
Show Figures

Figure 1

17 pages, 2262 KB  
Article
Fiber Bragg Grating Embedded 3D-Printed Insole with Commercial and Portable Reader for Stance Phase Determination
by Arnaldo Leal-Junior, Mariana Silveira, Jan Nedoma and Radek Martinek
Biosensors 2025, 15(9), 623; https://doi.org/10.3390/bios15090623 - 19 Sep 2025
Viewed by 272
Abstract
This paper presents development and application of a Fiber Bragg Grating (FBG) array embedded in a 3D-printed insole for ground reaction force (GRF) estimation. In this case, a 3D-printed insole is fabricated from a scanned commercial insole in which a 5-FBGs array is [...] Read more.
This paper presents development and application of a Fiber Bragg Grating (FBG) array embedded in a 3D-printed insole for ground reaction force (GRF) estimation. In this case, a 3D-printed insole is fabricated from a scanned commercial insole in which a 5-FBGs array is integrated. The FBGs are characterized as a function of the applied transverse force, where a mean sensitivity of 0.11 ± 0.10 pm/N was obtained considering all FBGs. A portable FBG signal acquisition system was connected to the FBG array embedded in the insole and tested for the GRF analysis in a healthy volunteer. The gait tests results indicate stance and swing phases of 41.0 ± 6.5% and 59 ± 6.5%, respectively, which are within reference values of the literature. Furthermore, a 0.904 R2 was found in the correlation analysis of the measured GRF response and the conventional M-shaped curve for the GRF in which all subdivisions of the stance phase were detected. Full article
(This article belongs to the Special Issue Wearable Sensors for Precise Exercise Monitoring and Analysis)
Show Figures

Figure 1

14 pages, 794 KB  
Article
Comparative Biomechanical Strategies of Running Gait Among Healthy and Recently Injured Pediatric and Adult Runners
by Cole Verble, Ryan M. Nixon, Lydia Pezzullo, Matthew Martenson, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(9), 937; https://doi.org/10.3390/bioengineering12090937 - 30 Aug 2025
Viewed by 660
Abstract
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running [...] Read more.
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running on an instrumented treadmill with simultaneous 3D-motion capture. Significant age X injury interactions existed for cadence, peak GRF, and peak joint angles in stance. Cadence was fastest in healthy adults and 2–3% lower in other groups (p = 0.049). Injured adults exhibited higher variance in stance and swing time, whereas injured pediatric runners had lower variance in these measures (p < 0.05). Peak GRF was highest in non-injured adults (2.6–2.7 BW) and lowest in injured adults (2.4 BW; p < 0.05). VALRs (BW/s) were higher among pediatric groups, irrespective of injury (p < 0.05). The interaction for ankle dorsiflexion/plantarflexion moment was significant (p = 0.05). Healthy pediatric runners produced more plantarflexion than all other groups (p = 0.026). Pelvis rotation was highest in healthy pediatric runners and lowest in healthy adults (17.3° versus 12.0°; p = 0.036). Pediatric runners did not leverage force-dampening strategies, but reduced gait cycle time variance and controlled pelvic rotation. Injured adults had lower GRF and longer stance time, indicating a shift toward force mitigation during stance. Age-specific rehabilitation and gait retraining approaches may be warranted. Full article
(This article belongs to the Special Issue Biomechanics of Physical Exercise)
Show Figures

Figure 1

18 pages, 1039 KB  
Article
In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study
by Laura Ramírez-Pérez, Eric Yung-Sheng Su, Antonio Ignacio Cuesta-Vargas and Graham K. Kerr
Sensors 2025, 25(17), 5333; https://doi.org/10.3390/s25175333 - 27 Aug 2025
Viewed by 732
Abstract
The assessment of shoulder stability is a great challenge in sports medicine. There is a lack of objective tools to assess functional shoulder stability in sports with high demands on the upper limb. This cross-sectional study recruited twenty healthy adults to analyze the [...] Read more.
The assessment of shoulder stability is a great challenge in sports medicine. There is a lack of objective tools to assess functional shoulder stability in sports with high demands on the upper limb. This cross-sectional study recruited twenty healthy adults to analyze the use of a force platform in a push-up analysis as a valid tool for estimating glenohumeral stability. For this purpose, the subjects performed one strength task based on a maximum lateral abduction against a dynamometer. They also performed three variations of a push-up task on force plates with movements recorded by a 3D motion capture system. The results showed that healthy adults present similar movement patterns during push-ups, without differences in terms of stability between sexes, although males showed greater values in lateral abduction strength (left: 63.2 vs. 36.8; p < 0.001; right: 64.2 vs. 38.9; p < 0.001) and ground reaction force peak in the three push-up tasks (p < 0.005). Moreover, four prediction models were developed based on the use of force plate data to estimate kinematics concerning humerus acceleration (p < 0.001). In conclusion, this research demonstrated that force plates are a valid tool for upper-limb assessment with significant correlations with dynamometer and 3D motion capture measures. Full article
(This article belongs to the Special Issue Novel Optical Biosensors in Biomechanics and Physiology)
Show Figures

Figure 1

21 pages, 8112 KB  
Article
Improved Static and Dynamic Behavior of Auxetic Structures with Radial Limb Design
by Serdar Sayın and Zeki Kıral
Appl. Sci. 2025, 15(17), 9343; https://doi.org/10.3390/app15179343 - 26 Aug 2025
Viewed by 677
Abstract
Auxetic structures, also known as metamaterials, exhibit a negative Poisson’s ratio under applied load and have found use across a variety of applications. This behavior may arise from material properties or from the structural design itself. Depending on the intended application, such structures [...] Read more.
Auxetic structures, also known as metamaterials, exhibit a negative Poisson’s ratio under applied load and have found use across a variety of applications. This behavior may arise from material properties or from the structural design itself. Depending on the intended application, such structures can be subjected to either static or dynamic loading conditions. New geometries that potentially enhance energy absorption or damping in both static and dynamic conditions were investigated in this work, using the well-known Reentrant design reported in earlier research articles as a benchmark. As an alternative to the cellular limb angles employed in the well-known Reentrant model, the effect of radial limb radius was analyzed in the novel cell designs called Arched-Reentrant. Four alternative designs have been proposed, and all analyses were conducted in ANSYS-2025-R1. The specimens were manufactured by using the 3D printing method with thermoplastic polyurethane (TPU) material having a shore hardness of 95A. In the evaluation of the outcomes resulting from different designs, the specimens were analyzed under static, impulsive, and harmonic loading conditions. The energy absorption capacities of the samples were examined in relation to their design modifications. Within the scope of the study, it was observed that Arched-Reentrant structures are capable of absorbing higher amounts of energy under static loading and exhibit greater stiffness under dynamic loads compared to conventional Reentrant structures. The impulse analysis’s findings demonstrate that the suggested Arched-Reentrant-V3 model performs better, with over 50% less displacement and comparable reaction forces. In addition, the harmonic analysis findings show that the Arched-Reentrant-V3 model has lower ground reaction forces and displacement values. As a result, the suggested model can be regarded as an efficient damping component when dynamic loading occurs. Full article
Show Figures

Figure 1

12 pages, 1622 KB  
Article
Pitch Invariance Reveals Skill-Specific Coordination in Human Movement: A Screw-Theoretic Reanalysis of Golf Swing Dynamics
by Wangdo Kim
J. Funct. Morphol. Kinesiol. 2025, 10(3), 315; https://doi.org/10.3390/jfmk10030315 - 15 Aug 2025
Viewed by 623
Abstract
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor [...] Read more.
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor coordination. Methods: We reanalyzed a validated motion capture dataset involving a proficient and a novice female golfer. ISA trajectories and pitch values were computed from 3D marker data, and synchronized with vertical ground reaction force (GRF) signals collected via force plate. Results: The proficient golfer exhibited tightly bounded pitch oscillations (approximately ±0.0025 cm/rad) that were temporally aligned with a single, well-defined GRF peak. In contrast, the novice showed irregular pitch fluctuations (−0.025 to +0.01 cm/rad) and asynchronous GRF patterns with multiple peaks. Conclusions: These findings demonstrate that pitch can serve as a biomechanical indicator of skilled performance, reflecting the degree of intersegmental coordination and force timing. Screw theory thus offers a rigorous framework for evaluating movement efficiency in sport and rehabilitation contexts. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

13 pages, 1225 KB  
Article
The Effect of Practicing Selected Sports on the Value of the Center of Pressure (COP): A Pilot Study
by Arletta Hawrylak, Aneta Demidaś and Adam Hawrylak
Appl. Sci. 2025, 15(16), 8774; https://doi.org/10.3390/app15168774 - 8 Aug 2025
Viewed by 301
Abstract
The purpose of this study was to determine whether training for a marathon and powerlifting could affect the value of the center of pressure (COP) in static and dynamic testing assessed with the Free Med ground reaction force platform. A baropodometric mat was [...] Read more.
The purpose of this study was to determine whether training for a marathon and powerlifting could affect the value of the center of pressure (COP) in static and dynamic testing assessed with the Free Med ground reaction force platform. A baropodometric mat was used to evaluate COP values, using Free Step computer software. The study was performed in three groups: marathon runners (M, n = 31), powerlifters (PL, n = 24), and a control group (C, n = 30). Basic descriptive statistics (mean ± standard deviation) were calculated for the COP in the static, anteroposterior (AP), and mediolateral (ML) directions, followed by dynamic test variables for the dominant (D) and non-dominant (ND) lower limbs. In each of the three study groups, one-factor ANOVA, two-factor MANOVA, and r-Pearson correlation coefficients between COP and D lower limb, as well as between COP and ND lower limb, were calculated. No statistically significant differences were observed between the means of the COP in the groups studied in the static test. A statistically significant difference between the COP of the D and ND lower limbs (p < 0.001) was observed in the dynamic test only in the M group. In both the C and PL groups, a significant relationship was observed between the two variables for the parameter of sway distance between the lower limbs (r = 0.75; p < 0.001 and r = 0.73; p < 0.001). Only in the M group were statistically significant differences found between the D and ND lower limbs in the dynamic study (p < 0.001). These athletes developed specific postural strategies characterized by the difference between the length of the sway path between the D and ND lower limbs. Further research is needed in these athlete groups to determine whether practicing these sports can affect the distribution of foot pressure on the ground. Full article
Show Figures

Figure 1

10 pages, 1114 KB  
Article
Restoration of Joint Line Obliquity May Not Influence Lower Extremity Peak Frontal Plane Moments During Stair Negotiation
by Alexis K. Nelson-Tranum, Marcus C. Ford, Nuanqiu Hou, Douglas W. Powell, Christopher T. Holland and William M. Mihalko
Bioengineering 2025, 12(8), 803; https://doi.org/10.3390/bioengineering12080803 - 26 Jul 2025
Viewed by 505
Abstract
Approximately 15% of total knee arthroplasty (TKA) patients remain dissatisfied after surgery, with joint line obliquity (JLO) potentially affecting patient outcomes. This study investigated whether JLO restoration influenced lower extremity frontal plane joint moments during stair negotiation by TKA patients. Thirty unrestored and [...] Read more.
Approximately 15% of total knee arthroplasty (TKA) patients remain dissatisfied after surgery, with joint line obliquity (JLO) potentially affecting patient outcomes. This study investigated whether JLO restoration influenced lower extremity frontal plane joint moments during stair negotiation by TKA patients. Thirty unrestored and twenty-two restored JLO patients participated in this study and were asked to perform five trials on each limb for stair negotiation while three-dimensional kinematics and ground reaction forces were recorded. Frontal plane moments at the ankle, knee and hip were calculated using Visual 3D. The restoration of JLO did not alter frontal plane joint moments during stair negotiation. Both groups showed symmetrical moment profiles, indicating no significant biomechanical differences between the restored and unrestored JLO groups. Restoring JLO did not affect frontal plane joint moments during stair negotiation, suggesting it may not contribute to patient satisfaction disparities post-TKA. Further research should explore other factors, such as surgical technique and implant design, that might influence recovery. Full article
Show Figures

Figure 1

15 pages, 1395 KB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 1120
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

32 pages, 5087 KB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 329
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 2840 KB  
Article
A Digital Twin System for the Sitting-to-Standing Motion of the Knee Joint
by Tian Liu, Liangzheng Sun, Chaoyue Sun, Zhijie Chen, Jian Li and Peng Su
Electronics 2025, 14(14), 2867; https://doi.org/10.3390/electronics14142867 - 18 Jul 2025
Viewed by 684
Abstract
(1) Background: A severe decline in knee joint function significantly affects the mobility of the elderly, making it a key concern in the field of geriatric health. To alleviate the pressure on the knee joints of the elderly during daily movements such as [...] Read more.
(1) Background: A severe decline in knee joint function significantly affects the mobility of the elderly, making it a key concern in the field of geriatric health. To alleviate the pressure on the knee joints of the elderly during daily movements such as sitting and standing, effective biomechanical solutions are required. (2) Methods: In this study, a biomechanical framework was established based on mechanical analysis to derive the transfer relationship between the ground reaction force and the knee joint moment. Experiments were designed to collect knee joint data on the elderly during the sit-to-stand process. Meanwhile, magnetic resonance imaging (MRI) images were processed through a medical imaging control system to construct a detailed digital 3D knee joint model. A finite element analysis was used to verify the model to ensure the accuracy of its structure and mechanical properties. An improved radial basis function was used to fit the pressure during the entire sit-to-stand conversion process to reduce the computational workload, with an error of less than 5%. In addition, a small-target human key point recognition network was developed to analyze the image sequences captured by the camera. The knee joint angle and the knee joint pressure distribution during the sit-to-stand conversion process were mapped to a three-dimensional interactive platform to form a digital twin system. (3) Results: The system can effectively capture the biomechanical behavior of the knee joint during movement and shows high accuracy in joint angle tracking and structure simulation. (4) Conclusions: This study provides an accurate and comprehensive method for analyzing the biomechanical characteristics of the knee joint during the movement of the elderly, laying a solid foundation for clinical rehabilitation research and the design of assistive devices in the field of rehabilitation medicine. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

28 pages, 3409 KB  
Article
Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
by Mahsa Barfi, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell and Madhur Mangalam
Sensors 2025, 25(14), 4454; https://doi.org/10.3390/s25144454 - 17 Jul 2025
Viewed by 518
Abstract
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination [...] Read more.
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination involving a wobble board, introducing mechanical instability mainly along the mediolateral (ML) axis and the Trail Making Task (TMT), which imposes precise visual demands primarily along the anteroposterior (AP) axis. Using Multiscale Regression Analysis (MRA), a novel analytical method rooted in Detrended Fluctuation Analysis (DFA), we scrutinized CoP-to-CoM and CoM-to-CoP effects across multiple timescales ranging from 100ms to 10s. CoP was computed from ground reaction forces recorded via a force plate, and CoM was derived from full-body 3D motion capture using a biomechanical model. We found that the wobble board attenuated CoM-to-CoP effects across timescales ranging from 100to400ms. Further analysis revealed nuanced changes: while there was an overall reduction, this encompassed an accentuation of CoM-to-CoP effects along the AP axis and a decrease along the ML axis. Importantly, these alterations in CoP’s responses to CoM movements outweighed any nonsignificant effects attributable to the TMT. CoM exhibited no sensitivity to CoP movements, regardless of the visual and mechanical task demands. In addition to identifying the characteristic timescales associated with bodily DoFs in facilitating upright posture, our findings underscore the critical significance of directionally challenging biomechanical constraints, particularly evident in the amplification of CoP-to-CoM effects along the AP axis in response to ML instability. These results underscore the potential of wobble board training to enhance the coordinative and compensatory responses of bodily DoFs to the shifting CoM by prompting appropriate adjustments in CoP, thereby suggesting their application for reinstating healthy CoM–CoP dynamics in clinical populations with postural deficits. Full article
Show Figures

Figure 1

10 pages, 478 KB  
Article
Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction
by Manuel Angel Romero Padron, Alyx Jorgensen, David M. Werner, Matthew Alan Tao and Elizabeth Wellsandt
Appl. Sci. 2025, 15(14), 7780; https://doi.org/10.3390/app15147780 - 11 Jul 2025
Viewed by 606
Abstract
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force [...] Read more.
Asymmetries are common during squats following anterior cruciate ligament reconstruction (ACLR). This study examined interlimb loading differences between squat phases at 6 months post-ACLR. Thirty-five participants performed bodyweight squats at self-selected speed and were analyzed using 3D motion capture. Vertical ground reaction force impulse (vGRFi), external knee flexion moment impulse (KFMi) and hip-to-knee flexion moment impulse ratio (HKRi) were calculated, along with interlimb ratios (ILR). Squat phase durations were also recorded. Paired t-tests and ANCOVA (controlling for time) were used to compare biomechanical variables across squat phases. Greater asymmetry was observed during ascent for vGRFi ILR (p = 0.045), KFMi ILR (p < 0.001) and HKRi ILR (p = 0.006). The ascent phase was faster than descent (p = 0.036). After adjusting for time, phase-related differences in ILRs were no longer significant. These findings suggest that greater limb and knee-specific loading asymmetries occur during the ascent phase of squats but may be influenced by movement speed. Importantly, significant knee-specific loading asymmetries persisted regardless of squat phase. At 6 months post-ACLR, addressing neuromuscular control and movement speed during rehabilitation may help reduce biomechanical imbalances during closed kinetic chain exercises. Full article
(This article belongs to the Special Issue Applied Biomechanics and Sports Sciences)
Show Figures

Figure 1

18 pages, 796 KB  
Review
In Vivo Assessment of Ankle Stability During Dynamic Exercises: Scoping Review
by Sandra Sanchez-Morilla, Pablo Cervera-Garvi, Laura Ramirez-Perez, Irene Garcia-Paya, Salvador Diaz-Miguel and Ana Belen Ortega-Avila
Healthcare 2025, 13(13), 1560; https://doi.org/10.3390/healthcare13131560 - 30 Jun 2025
Viewed by 671
Abstract
Background: The ankle joint plays a key role in stabilizing the lower limb during interaction with ground reaction forces. Instability can result in pain, weakness, and impaired movement. Although assessing ankle stability is important, few studies examine existing in vivo methodologies for dynamic [...] Read more.
Background: The ankle joint plays a key role in stabilizing the lower limb during interaction with ground reaction forces. Instability can result in pain, weakness, and impaired movement. Although assessing ankle stability is important, few studies examine existing in vivo methodologies for dynamic load assessment, limiting effective injury management. Objective: To identify in vivo techniques using objective measurement tools for assessing ankle stability during dynamic exercise. Methods: A scoping review was performed based on PRISMA-ScR criteria. Five databases—PubMed, PEDro, Embase, SPORTDiscus, and CDSR—were searched from inception to September 2024. Results: Out of 1678 records, 32 studies met the inclusion criteria. A total of 1142 subjects were included: 293 females (25.6%), 819 males (71.7%), and 30 unspecified (2.62%). Six categories of dynamic exercise were identified: analytical, functional, balance, stair climbing, running, and walking. The techniques used included 3D motion capture, force and pressure platforms, dynamometry, electromyography, accelerometers, pressure and speed sensors, instrumented treadmills, and inertial measurement units. Conclusions: The 3D motion capture systems (240 Hz) and the force platforms (1000 Hz) were most frequently used in functional tasks and walking. Combining these with multisegmented foot models appears optimal, though tool selection depends on study goals. This review enhances our understanding of ankle stability assessment. Full article
(This article belongs to the Special Issue Research on Podiatric Medicine and Healthcare)
Show Figures

Figure 1

13 pages, 1678 KB  
Article
Running and Jumping After Muscle Fatigue in Subjects with a History of Knee Injury: What Are the Acute Effects of Wearing a Knee Brace on Biomechanics?
by Tobias Heß, Thomas L. Milani, Jan Stoll and Christian Mitschke
Bioengineering 2025, 12(6), 661; https://doi.org/10.3390/bioengineering12060661 - 16 Jun 2025
Viewed by 2019
Abstract
The knee is one of the most frequently injured joints, involving various structures. To prevent reinjury after rehabilitation, braces are commonly used. However, most studies on knee supports focus on subjects with anterior cruciate ligament (ACL) injuries and do not account for muscle [...] Read more.
The knee is one of the most frequently injured joints, involving various structures. To prevent reinjury after rehabilitation, braces are commonly used. However, most studies on knee supports focus on subjects with anterior cruciate ligament (ACL) injuries and do not account for muscle fatigue, which typically occurs during prolonged intense training and can significantly increase the risk of injury. Hence, this study investigates the acute effects of wearing a knee brace on biomechanics in subjects with a history of various unilateral knee injuries or pain under muscle fatigue. In total, 50 subjects completed an intense fatigue protocol and then performed counter-movement jumps and running tests on a force plate while tracking kinematics with a marker-based 3D motion analysis system. Additionally, subjects filled out a visual analog scale (VAS) to assess knee pain and stability. Tests were conducted on the injured leg with and without a knee brace (Sports Knee Support, Bauerfeind AG, Zeulenroda-Triebes, Germany) and on the healthy leg. Results indicated that wearing the knee brace stabilized knee movement in the frontal plane, with a significant reduction in maximal medio-lateral knee acceleration and knee abduction moment during running and jumping. The brace also normalized loading on the injured leg. We observed higher maximal knee flexion moments, which were associated with increased vertical ground reaction forces, segment velocities, and knee flexion angles. Subjects reported less pain and greater stability while wearing the knee brace. Therefore, we confirm that wearing a knee brace on the injured leg improves joint biomechanics by enhancing stability and kinematics and reducing pain during running and jumping, even with muscle fatigue. Consequently, wearing a knee brace after a knee joint injury may reduce the risk of reinjury. Full article
(This article belongs to the Special Issue Biomechanics of Orthopaedic Rehabilitation)
Show Figures

Figure 1

Back to TopTop